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ABSTRACT
The transfer-matrixmethod (TMM) in electromagnetics and optics is a powerful and convenient
mathematical formalism for determining the planewave reflection and transmission character-
istics of an infinitely extended slab of a linear material. While the TMM was introduced for
a homogeneous uniaxial dielectric-magnetic material in the 1960s, and subsequently extended
for multilayered slabs, it has more recently been developed for the most general linear materi-
als, namely bianisotropic materials. By means of the rigorous coupled-wave approach, slabs that
are periodically nonhomogeneous in the thickness direction can also be accommodated by the
TMM. In this book an overview of the TMM is presented for the most general contexts as well
as for some for illustrative simple cases. Key theoretical results are given; for derivations, the
reader is referred to the references at the end of each chapter. Albums of numerical results are
also provided, and the computer code used to generate these results are provided in an appendix.

KEYWORDS
transfer matrix, bianisotropy, periodic nonhomogeneity, rigorous coupled-wave ap-
proach, reflectance, transmittance, slab, matrix ordinary differential equation
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Preface
The transfer-matrix method (TMM) for linear electromagnetics and optics came into existence
during the 1960s. Initiated in the 1966 doctoral thesis of Jean Billard for a homogeneous uniaxial
dielectric-magnetic material, application of the TMM for multilayered slabs became popular
after the publication of three papers of Dwight W. Berreman from 1970–1973. The rigorous
coupled-wave approach widely used to solve grating problems emerged in the early 1980s from
the papers of M. G. Moharam and Thomas K. Gaylord, its implementation requiring the TMM
for electrically thin slabs.

In this book on the TMM, only key results are given, full details of derivations of these re-
sults being available in the references listed at the end of each chapter. The intended readership
comprises graduate students and researchers, seeking a concise survey of the state-of-the-art
about the TMM for electromagnetics and optics. A familiarity with undergraduate-level elec-
tromagnetic theory is assumed. SI units are used throughout.

Tom G. Mackay, Edinburgh, Scotland
Akhlesh Lakhtakia, University Park, PA, USA
January 2020





xiii

Acknowledgments
Every year, both of us learn more about electromagnetic theory and applications, not only
through our own research but also by reviewing manuscripts, reading publications, attending
seminars and conferences, and interacting with other researchers. We take joy in acknowledging
our debt of gratitude to currently active colleagues worldwide as well as those who carried the
beacons of science before us.

We especially thank Kevin Vynck of Institut d’Optique d’Aquitaine (Talence, France)
for locating the Ph.D. thesis of Jean Billard, whose seminal contribution to the transfer-matrix
method has remained obscure for five decades.

Akhlesh Lakhtakia thanks Faiz Ahmad, Tom H. Anderson, Francisco Chiadini, Ben-
jamin J. Civiletti, Jhuma Dutta, Muhammad Faryad, Vincenzo Fiumara, Peter B. Monk, John
A. Polo Jr., S. Anantha Ramakrishna, Antonio Scaglione, Mikhail V. Shuba, Manuel E. Solano,
Vijayakumar C. Venugopal, and Fei Wang for research discussions that either directly or indi-
rectly shaped this book. He also thanks the US National Science Foundation for two grants
(DMR-1125591 and DMS-1619901), the Charles Godfrey Binder Endowment at The Penn-
sylvania State University for ongoing support of his research from 2006, and the Trustees of The
Pennsylvania State University as well as the Otto Mønsted Foundation for enabling a sabbatical
leave of absence at the Danish Technical University in Fall 2019. Tom Mackay acknowledges
the support of EPSRC grant EP/S00033X/1.

We thank our families for their loving support and the staff of Morgan & Claypool for
producing this book.





1

C H A P T E R 1

Introduction
The transfer-matrix method (TMM) in electromagnetics and optics is a mathematically conve-
nient formalism for determining the planewave reflection and transmission characteristics of an
infinitely extended slab of a linear material. The direction of propagation and the polarization
state of the incident plane wave can be arbitrary. This arbitrariness allows the TMM to be useful
for the illumination of the slab by a finite source located at a finite distance from either of the
two faces of the slab, because the time-harmonic fields radiated by that source can be expressed
as an angular spectrum of plane waves [1]. The slab may be spatially homogeneous in the thick-
ness direction or not. In the latter case, the slab may be continuously nonhomogeneous as for
certain sculptured thin films [2] or the slab may be piecewise homogeneous in which case it is
regarded as a multilayered slab [3, 4]. In a multilayered slab, the interface of any two adjacent
constituent layers may be planar or periodically corrugated [5]. Finally, the materials in a slab
may be of the most general linear type, i.e., bianisotropic materials [6].

Consider a bilayered slab occupying the region 0 < z < d . Both constituent layers are
homogeneous, have infinite extent along the x and y axes, and have finite thickness (along
the z axis), as shown in Fig. 1.1(a). The interface of the two layers is planar and is parallel
to both exposed faces of the bilayer. If a plane wave is considered incident on the bilayered
slab, there must also exist a reflected plane wave and a transmitted plane wave. The TMM uses
two 4 � 4 matrixes, one for each constituent layer in the bilayered slab, to relate the complex-
valued amplitudes of the electric field phasor of the reflected and transmitted plane waves to the
complex-valued amplitude of the electric field phasor of the incident plane wave. These 4 � 4

matrixes are called transfer matrixes.
Suppose the interface of the two constituent layers is periodically corrugated along the

x axis and the direction of propagation of the incident plane wave lies wholly in the xz plane,
as shown in Fig. 1.1(b). Then, the reflected electromagnetic field comprises an infinite num-
ber of distinct plane waves. These reflected plane waves are labeled 0;˙1;˙2; : : : . The reflected
plane wave labeled 0 is called specular, the remaining ones being nonspecular. Only some of the
nonspecular plane waves in the reflected field can transport energy an infinite distance from the
bilayered slab. The transmitted electromagnetic field also comprises a specular plane wave (la-
beled 0) and an infinite number of nonspecular plane waves (labeled other than 0). Again, only
some of the nonspecular plane waves in the transmitted field can transport energy an infinite
distance from the bilayered slab. The TMM uses two 4.2Mt C 1/ � 4.2Mt C 1/ matrixes, one
for each constituent layer in the bilayered slab, to relate the complex-valued amplitudes of the
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(a)

(b)
0
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Figure 1.1: (a) Specular reflection and transmission of a plane wave incident on a bilayered
slab wherein all interfaces are planar and parallel to each other. (b) Specular (labeled 0) and
nonspecular (labeled other than 0) reflection and transmission when the internal interface in a
bilayer is periodically corrugated along the x axis. The nonspecular modes are infinite in number,
but only a few can propagate energy an infinite distance from the bilayered slab.

electric field phasors of the reflected and transmitted plane waves to the complex-valued am-
plitude of the electric field phasor of the incident plane wave, with the integer Mt > 0 being
sufficiently large.

When the interface of the two constituent layers is periodically corrugated along both the
x and y axes, the TMM uses two 4.2�t C 1/ � 4.2�t C 1/ matrixes, one for each layer in the
bilayered slab, where �t D Mt .Nt C 1/CNt .Mt C 1/ and the integers Mt > 0 and Nt > 0 are
sufficiently large.

1.1 BRIEFHISTORYOFTMM
Before the advent of the TMM, recursive schemes had been formulated and implemented for
multilayered slabs comprising planar layers of isotropic dielectricmaterials [7–10]. If the incident
plane wave is linearly polarized, the reflected and transmitted plane waves then have the same
polarization state as the incident plane wave. These schemes can be extended to incorporate
periodically corrugated interfaces [11, 12], but become cumbersome [13] when the reflected
and transmitted plane waves can have both co-polarized and cross-polarized components. That
happens when: (i) materials more complicated than isotropic dielectric-magnetic materials [6,
14] are involved, and/or (ii) the direction of propagation of the incident plane wave has a nonzero
component along the y axis and an interface is periodically corrugated along the x axis, and/or



1.1. BRIEFHISTORYOFTMM 3
(iii) when the interface is periodically corrugated along both the x and y axes [5, 15, 16]. The
TMM is very convenient when such issues must be tackled.

When a linearly polarized plane wave is incident on a slab of an isotropic dielectric mate-
rial, the electromagnetic fields induced inside it can be decomposed into two plane waves, one
propagating toward one face of the slab and the other propagating toward the other face. Both
of these plane waves have the same polarization state as the incident plane wave. The ampli-
tudes of the electric field phasors of the induced plane waves can be used to formulate a 2 � 2

matrix, which can be used to develop a matrix formulation [17–21] for multilayered slabs with
planar interfaces. This matrix formulation can be extended to encompass anisotropic dielectric
materials [12], but the extension is inelegant and definitely cumbersome.

For any time-harmonic electromagnetic field in a source-free region occupied by any
homogeneous isotropic dielectric-magnetic medium, the derivative .@=@z/

��
uxux C uyuy

�
�

E.r; !/� can be written in terms of the x- and y-directed components of H.r; !/ and their
derivatives with respect to x and y, where r D xux C yuy C zuz is the position vector with˚
ux; uy; uz

	
as the triad of Cartesian unit vectors, and ! is the angular frequency. Likewise, the

derivative .@=@z/
��
uxux C uyuy

�
�H.r; !/

�
can be written in terms of the x- and y-directed

components of E.r; !/ and their derivatives with respect to x and y [22]. These relationships
can be extended to source-free regions occupied by homogeneous bianisotropic materials [23].
Accordingly, if the field phasors are expressed as

E.r; !/ D e.z; !/ exp Œiq.x cos C y sin /�
H.r; !/ D h.z; !/ exp Œiq.x cos C y sin /�

)
; (1.1)

with auxiliary phasors

e.z; !/ D ex.z; !/ux C ey.z; !/uy C ez.z; !/uz

h.z; !/ D hx.z; !/ux C hy.z; !/uy C hz.z; !/uz

)
; (1.2)

the 4 � 4 matrix ordinary differential equation

d

dz

h
f .z; !/

i
D i

h
P .!/

i
�

h
f .z; !/

i
(1.3)

is obtained. Herein, q.ux cos C uy sin / is the transverse wave vector with  2 Œ0; 2�/ as an
angle, the 4-column vector

h
f .z; !/

i
D

2666664
ex.z; !/

ey.z; !/

hx.z; !/

hy.z; !/

3777775 ; (1.4)

while the 4 � 4 matrix
h
P .!/

i
is specified in (2.49).
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Equation (1.3) is the bedrock of the TMM. It was formulated and solved for propagation

in a uniaxial dielectric-magnetic material by Billard in 1966 [24]. Shortly thereafter, Teitler and
Henvis [25] formulated and solved (1.3) for a slab of an anisotropic dielectric material, but then
they reverted to the 2 � 2-matrix formalism of Abelès that had originated two decades earlier
[20]. However, Berreman persevered with 4 � 4 matrixes, first for slabs of cholesteric liquid
crystals [26] and then for slabs of homogeneous bianisotropic materials [27].

Early attempts to apply the TMM to a slab composed of a continuously nonhomoge-
neous material must be viewed with caution. Although Berreman [26] correctly applied a nu-
merical technique to solve (1.3) for a cholesteric liquid crystal of finite thickness, Equation (6)
in Ref. 28 is incorrect [29]. A piecewise-uniform approximation provides a convenient path to
handle slabs of continuously nonhomogeneous materials [30, 31], but other numerical tech-
niques also exist [32, 33]. The TMM has also been developed to accommodate anisotropic [15]
and bianisotropic [5, 16] layers with periodically corrugated interfaces.

1.2 APPLICATIONSOFTMM

A commonplace experimental configuration, i.e., a light beam incident on a slab, provides the
backdrop for the TMM. A beam of large width in relation to the wavelength can be approxi-
mated by a plane wave [1]. Accordingly, the TMM is useful for a host of practical applications.

If the slab is a single layer of a homogeneous or nonhomogeneous material, the TMM
can be harnessed with ellipsometry measurements [34, 35] to characterize the optical properties
of the slab material. Furthermore, the TMM can be exploited to aid the design of optical com-
ponents such as Bragg mirrors, antireflection coatings, waveplates, and polarization converters
[35–37].

Another major area of TMM application for multilayered slabs lies in the analysis of
surface waves that are guided by the planar interface of two dissimilar materials [5, 38]. For
example, in the case of spatially homogeneous constituent layers, Dyakonov surface waves [39–
41] can be excited at the interface of two dielectric constituent layers provided that one of them
is anisotropic, while surface-plasmon-polariton waves [42, 43] can be excited at the interface
of two isotropic constituent layers provided that one of them is metallic. If one (or more) of
the constituent layers is periodically nonhomogeneous in the thickness direction, then Tamm
surface waves [44, 45] can be excited at the interface of two isotropic constituent layers or
Dyakonov–Tamm surface waves [46, 47] can be excited provided that one of the constituent
layers is anisotropic. Composite guided waves excited in a multilayered slab can also be identi-
fied using the TMM [48].

If the interfaces of adjacent constituent layers in a multilayered slab are planar, the slab
provides an appropriate model for the analysis of prism-coupled excitation of surface waves, as
arises in the Turbadar–Kretschmann–Raether [49–51] and Turbadar–Otto [52] configurations.
On the other hand, if an interface of two adjacent constituent layers is periodically corrugated,
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then the TMM can be harnessed to analyze surface waves that are excited in the grating-coupled
configuration [42, 53, 54].

The versatility of the TMM extends to the incorporation of a layer of a topological insu-
lator [55, 56] in a slab through suitable jump conditions across the two faces of that layer [57].
Also, infinitely extended graphene [58] can be incorporated through a jump condition across
it [59].

1.3 OVERVIEW

The TMM is presented in full generality in this book. Chapter 2 provides the prerequisite
electromagnetic theory concerning linear materials; bianisotropic materials and specializations
thereof are described, and the 4 � 4-matrix formulation for planewave propagation in such ma-
terials is introduced. The TMM for a slab with adjacent constituent layers that have planar inter-
faces is presented in Chapter 3. The material of each constituent layer is spatially homogeneous
and bianisotropic in general. By means of a piecewise-uniform approximation, the same formal-
ism can be applied to a bianisotropic slab which is spatially nonhomogeneous in the thickness
direction. The TMM formalism of Chapter 3 is extended in Chapter 4 wherein a multilayered
slab containing two adjacent constituent layers with a doubly periodic interface is considered; as
in Chapter 3, the constituent layers in Chapter 4 are spatially homogeneous and bianisotropic.
In order to highlight the key features of the TMM for the simplest scenario, the TMM is given
in Chapter 5 for a multilayered slab made of isotropic dielectric materials, and the constituent
layers can have either planar interfaces or singly periodic interfaces. Chapter 6 comprises some
closing remarks. A short overview of 3 � 3 dyadics is provided in Appendix A; for further de-
tails, readers are referred elsewhere [60]. Mathematica™ codes used to generate the numerical
results presented in Chapters 3 and 5 are provided in Appendix B.

In the notation adopted, 3-vectors are underlined once while 3 � 3 dyadics [60] are dou-
ble underlined. Matrixes are doubled underlined and enclosed in square brackets; and n-vectors
where n > 3 are underlined once and enclosed in square brackets. The identity 3 � 3 dyadic is
denoted by I D uxux C uyuy C uzuz and the null 3 � 3 dyadic by 0. The real and imaginary
parts of complex quantities are delivered by the operators Re f � g and Im f � g, respectively. The
complex conjugate of a complex-valued scalar � is denoted by ��. The symbols "0 and �0 rep-
resent the permittivity and permeability of free space, respectively. The free-space wavenumber
is denoted by k0 D !

p
"0�0, the wavelength in free space by �0 D 2�=k0, and the intrinsic

impedance of free space by �0 D
p
�0="0. SI units are adopted throughout.
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C H A P T E R 2

Electromagnetic Preliminaries
As a precursor to the presentation of the TMM for electromagnetic reflection–transmission
boundary-value problems, the essential background electromagnetic theory is presented in this
chapter. After the introduction of theMaxwell postulates, the constitutive relations are described
for the most general linear materials and specializations thereof. The matter of planewave propa-
gation in such materials is then considered, leading to the formulation of a 4 � 4 matrix ordinary
differential equation which is the bedrock of the TMM.

2.1 MAXWELLPOSTULATES

2.1.1 MICROSCOPIC PERSPECTIVE
Everymaterial is spatially nonhomogeneous and temporally varying from themicroscopic electro-
magnetic perspective, since it is a collection of point charges. Given that the approach adopted
in this book is a classical one, uncertainties in the positions or velocities of these point charges
are irrelevant. An ensemble of point charges q`, ` 2 f1; 2; 3; : : :g, positioned at r`.t/ and moving
with velocity v`.t/ at time t , gives rise to the microscopic charge density

Qc.r; t/ D
X
`

q` ı Œr � r`.t/� (2.1)

and the microscopic current density

Qj .r; t/ D
X
`

q` v` ı Œr � r`.t/�; (2.2)

wherein the Dirac delta satisfies the constraintZ 1

�1

ı.s/ ds D 1: (2.3)

Both of the densities are sources of two microscopic electromagnetic fields, namely the electric
field Qe.r; t/ and the magnetic field Qb.r; t/.
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The relationships between the microscopic source densities, Qc.r; t/ and Qj .r; t/, and the
fields, Qe.r; t/ and Qb.r; t/, are encapsulated by the microscopic Maxwell postulates [1]

r � Qe.r; t/C
@

@t
Qb.r; t/ D 0

r � Qb.r; t/ � "0�0
@

@t
Qe.r; t/ D �0 Qj .r; t/

r � Qe.r; t/ D
1

"0
Qc.r; t/

r � Qb.r; t/ D 0

9>>>>>>>>>>=>>>>>>>>>>;
: (2.4)

The permittivity and permeability ofmatter-free space are denoted by "0 D 8:854 � 10�12 Fm�1

and �0 D 4� � 10�7 H m�1, respectively. The microscopic fields Qe.r; t/ and Qb.r; t/ possess spa-
tial variations over distances . 10�10 m and temporal variations over durations ranging from
. 10�13 s for nuclear vibrations to . 10�17 s for electronic orbital motion [1].

2.1.2 MACROSCOPIC PERSPECTIVE
The summation index ` in (2.1) and (2.2) ranges from 1 to an impractically large number in any
volume occupied by a material that may be characterized from a macroscopic perspective. Con-
sequently, it is desirable to consider the spatiotemporal averages of the microscopic quantities in
(2.4), from amacroscopic perspective [2]. In fact, spatial averaging alone suffices since it implicitly
involves temporal averaging, due to the universal maximum speed c0 D ."0�0/

�1=2 being finite
[1]. The spatial average should be taken over volumes which are sufficiently large as to contain
many point charges but the linear extent of the averaging volume should be much smaller than
the smallest electromagnetic wavelength in consideration. Thus, the macroscopic perspective is
appropriate for solids and liquids in the extreme-ultraviolet regime and in longer-wavelength
regimes. The appropriate wavelength range for the macroscopic perspective may have a much
larger lower bound in rarefied gases.

Adoption of the macroscopic perspective leads to the replacement of (2.4) by

r � QE.r; t/C
@

@t
QB.r; t/ D 0

r � QB.r; t/ � "0�0
@

@t
QE.r; t/ D �0 QJ .r; t/

r � QE.r; t/ D
1

"0
Q�.r; t/

r � QB.r; t/ D 0

9>>>>>>>>>>=>>>>>>>>>>;
: (2.5)
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The macroscopic fields QE.r; t/ and QB.r; t/ represent the spatial averages of Qe.r; t/ and Qb.r; t/,
respectively; and the macroscopic charge and current densities Q�.r; t/ and QJ .r; t/ are likewise
related to Qc.r; t/ and Qj .r; t/.

The macroscopic source densities in a material may be regarded as either externally im-
pressed or arising from internal mechanisms. Thus, these source densities can be partitioned
as

Q�.r; t/ D Q�ext.r; t/C Q�int.r; t/

QJ .r; t/ D QJ ext.r; t/C QJ int.r; t/

)
; (2.6)

wherein the subscripts “ext” and “int” identify the externally impressed and internally arising
source densities, respectively. The internally arising source densities are characterized via the
macroscopic polarization QP .r; t/ and magnetization QM.r; t/ as follows:

Q�int.r; t/ D �r � QP .r; t/

QJ int.r; t/ D
@

@t
QP .r; t/C

1

�0
r � QM.r; t/

9>=>; : (2.7)

However, if QP .r; t/ were replaced by QP .r; t/ � r � QA.r; t/ and QM.r; t/ by QM.r; t/C

�0 .@=@t/ QA.r; t/, where QA.r; t/ is some differentiable vector function, then Q�int.r; t/ and QJ int.r; t/

given by (2.7) would remain unchanged. Hence, a degree of ambiguity is associated with the in-
ternally arising source densities represented by (2.7).

The polarization and magnetization are subsumed into the following definitions of two
macroscopic electromagnetic fields:1

QD.r; t/ D "0 QE.r; t/C QP .r; t/

QH.r; t/ D
1

�0
QB.r; t/ �

1

�0
QM.r; t/

9>=>; : (2.8)

The fields QD.r; t/ and QH.r; t/ develop in a material in response to the fields QE.r; t/ and QB.r; t/.
Consequently, QD.r; t/ and QH.r; t/ are regarded as induction fields, while QE.r; t/ and QB.r; t/ are
regarded as primitive fields. Unlike the induction fields, the primitive fields may be measured
directly via the Lorentz force [1]

QF Lor.r; t/ D q.r; t/
�

QE.r; t/C v.r; t/ � QB.r; t/
�

(2.9)

acting on a point charge q.r; t/ traveling at velocity v.r; t/.
By substituting (2.6)–(2.8) into (2.5), the four macroscopic electromagnetic fields QE.r; t/,

QD.r; t/, QB.r; t/, and QH.r; t/ are brought together in the macroscopic Maxwell postulates written
1An alternative convention is in common use concerning the definitions of the vectors QJ int.r; t/, QM.r; t/, and QH.r; t/.

This convention involves (2.7)2 being replaced by QJ int.r; t/ D .@=@t/ QP.r; t/C r � QM.r; t/ and (2.8)2 being replaced by
QH.r; t/ D ��1

0
QB.r; t/� QM.r; t/. The alternative convention is not used in this book.
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in standard form as follows:

r � QH.r; t/ �
@

@t
QD.r; t/ D QJ ext.r; t/

r � QE.r; t/C
@

@t
QB.r; t/ D 0

r � QD.r; t/ D Q�ext.r; t/

r � QB.r; t/ D 0

9>>>>>>>>>=>>>>>>>>>;
: (2.10)

These postulates comprise four linear differential equations: (i) the two homogeneous differential
equations (2.10)2 and (2.10)4 involving the primitive fields and (ii) the two inhomogeneous
differential equations (2.10)1 and (2.10)3 involving the induction fields.

The divergence postulate (2.10)4 is completely consistent with the curl postulate (2.10)2,
as can be seen by taking the divergence of the left and right sides of the latter postulate. The
consistency of the divergence postulate (2.10)3 and the curl postulate (2.10)1 mandates the rea-
sonable constraint

r � QJ ext.r; t/C
@

@t
Q�ext.r; t/ D 0: (2.11)

The two Maxwell curl postulates suffice for our purposes in the remainder of this book, the
macroscopic continuity equation (2.11) being presumed to hold in practical situations.

2.2 CONSTITUTIVERELATIONS

Although the Maxwell postulates (2.10) govern all electromagnetic phenomenons in materials,
they cannot be solved (for the primitive or the induction fields) without further information
being supplied. This further information is provided by constitutive relations, which relate the
primitive fields to the induction fields in the material under consideration. Formally, these may
be expressed in the general form

QD.r; t/ D F
˚

QE.r; t/; QB.r; t/
	

QH.r; t/ D G
˚

QE.r; t/; QB.r; t/
	 ) ; (2.12)

with F and G being linear functions of QE.r; t/ and QB.r; t/ for linear materials, and nonlinear
functions of QE.r; t/ and QB.r; t/ for nonlinear materials. This book is devoted to the TMM for
linear materials.
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In general, a material’s electromagnetic response is spatiotemporally nonlocal. Conse-

quently, in full generality, the constitutive relations of a linear material are expressed as [3]

QD.r; t/ D

Z
t 0

Z
r 0

h
Q"

EB
.r 0; t 0/ � QE.r � r 0; t � t 0/

CQ�
EB
.r 0; t 0/ � QB.r � r 0; t � t 0/

i
d3r 0 dt 0

QH.r; t/ D

Z
t 0

Z
r 0

h
Q�

EB
.r 0; t 0/ � QE.r � r 0; t � t 0/

CQ�
EB
.r 0; t 0/ � QB.r � r 0; t � t 0/

i
d3r 0 dt 0

9>>>>>>>>>>=>>>>>>>>>>;
; (2.13)

in terms of the four 3 � 3 constitutive dyadics Q"
EB
.r; t/, Q�

EB
.r; t/, Q�

EB
.r; t/, and Q�

EB
.r; t/. A guide

to 3 � 3 dyadics is provided in Appendix A.
The manifestation of nonlocality can vary greatly from one material to another. If a char-

acteristic length scale in a material is similar to the electromagnetic wavelength, then spatial
nonlocality may be significant [4]. However, the effects of spatial nonlocality are negligible in
the vast majority of situations currently considered as practical. On the other hand, since electro-
magnetic signals travel rapidly, the effects of temporal nonlocality must not be ignored. Spatially
local but temporally nonlocal linear materials are characterized by the following constitutive re-
lations:

QD.r; t/ D

Z
t 0

h
Q"

EB
.r; t 0/ � QE.r; t � t 0/C Q�

EB
.r; t 0/ � QB.r; t � t 0/

i
dt 0

QH.r; t/ D

Z
t 0

h
Q�

EB
.r; t 0/ � QE.r; t � t 0/C Q�

EB
.r; t 0/ � QB.r; t � t 0/

i
dt 0

9>>=>>; : (2.14)

2.3 FREQUENCYDOMAIN
The time-domain constitutive relations (2.14) are often inconvenient as the convolution inte-
grals therein usually lead to mathematical complications that are analytically intractable and
computationally challenging. These complications are bypassed by switching to the frequency
domain by taking the temporal Fourier transforms of all fields and sources appearing in (2.10)
and (2.14) as follows:

Z.r; !/ D

Z 1

�1

QZ.r; t/ exp.i!t/ dt ; Z 2

n
"

EB
; �

EB
; �

EB
; �

EB
; E;D;B;H; J ext; �ext

o
: (2.15)

Here, ! is the angular frequency and i D
p

�1. When QZ.r; t/ is either a source or a field, its
counterpart Z.r; !/ is referred to as a phasor.
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Accordingly, the Maxwell postulates (2.10) transform in the frequency domain to

r �H.r; !/C i!D.r; !/ D J ext.r; !/

r �E.r; !/ � i!B.r; !/ D 0

r �D.r; !/ D �ext.r; !/

r �B.r; !/ D 0

9>>>>>>=>>>>>>;
I (2.16)

furthermore, application of the convolution theorem [5] to (2.14) delivers the frequency-domain
constitutive relations

D.r; !/ D "
EB
.r; !/ �E.r; !/C �

EB
.r; !/ �B.r; !/

H.r; !/ D �
EB
.r; !/ �E.r; !/C �

EB
.r; !/ �B.r; !/

9=; : (2.17)

A price has to be paid for the relative simplicity of the frequency-domain constitutive re-
lations (2.17) as compared with the time-domain constitutive relations (2.14): The electromag-
netic fields and constitutive dyadics in the time-domain description (2.14) are all real-valued
quantities whereas their counterparts in the frequency-domain description (2.17) are all com-
plex valued. Thus, inverse temporal Fourier transforms must be taken to convert the frequency-
domain quantities into real-valued physical quantities.

The principle of causality leads to constraints on the real and imaginary parts of the
frequency-domain constitutive parameters. Since a passivematerial cannot respond to a stimulus
until after the stimulus has been received, we have

Q"
EB
.r; t/ � "0ı.t/I � 0

Q�
EB
.r; t/ � 0

Q�
EB
.r; t/ � 0

��1
0 ı.t/I � Q�

EB
.r; t/ � 0

9>>>>>>=>>>>>>;
for t � 0 : (2.18)

Now let the scalar function QZ.r; t/ represent an arbitrary component of any one of the dyadics
Q"

EB
.r; t/ � "0ı.t/I , Q�

EB
.r; t/, Q�

EB
.r; t/, and ��1

0 ı.t/I � Q�
EB
.r; t/. The analytic continuation of

Z.r; !/ in the upper half of the complex-! plane then yields the Hilbert transforms

Re fZ.r; !/g D
1

�
P
Z 1

�1

Im fZ.r; s/g
s � !

ds

Im fZ.r; !/g D �
1

�
P
Z 1

�1

Re fZ.r; s/g
s � !

ds

9>>=>>; ; (2.19)
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where P signifies the Cauchy principal value. As QZ.r; t/ is real valued, Z.r; !/ is related to its
complex conjugate Z�.r; !/ by

Z.r;�!/ D Z�.r; !/: (2.20)

By exploiting the symmetry condition (2.20), the Hilbert transforms (2.19) give rise to the
Kramers–Kronig relations [6]

Re fZ.r; !/g D
2

�
P
Z 1

0

s Im fZ.r; s/g
s2 � !2

ds

Im fZ.r; !/g D �
2

�
P
Z 1

0

! Re fZ.r; s/g
s2 � !2

ds

9>>>=>>>; : (2.21)

These two relations are representative of general constraints on the frequency responses of causal
linear systems [7].

The partnering of the primitive field phasors E.r; !/ and B.r; !/ leads to the Boys–Post
formulation of the constitutive relations equations (2.17). The field phasorsE.r; !/ and B.r; !/
are paired because their inverse temporal Fourier transforms appear in the Lorentz force. Alter-
natively, it can be reasonable to partner E.r; !/ withH.r; !/, in light of the standard boundary
conditions as well as the definition of the time-averaged Poynting vector [8]. That pairing leads
to the Tellegen formulation of the frequency-domain constitutive relations

D.r; !/ D "
EH
.r; !/ �E.r; !/C �

EH
.r; !/ �H.r; !/

B.r; !/ D �
EH
.r; !/ �E.r; !/C �

EH
.r; !/ �H.r; !/

)
: (2.22)

The constitutive dyadics in the Boys–Post equations (2.17) are related to those in the Tellegen
equations (2.22) as follows [3]:

"
EH
.r; !/ D "

EB
.r; !/ � �

EB
.r; !/ � ��1

EB
.r; !/ � �

EB
.r; !/

�
EH
.r; !/ D �

EB
.r; !/ � ��1

EB
.r; !/

�
EH
.r; !/ D ���1

EB
.r; !/ � �

EB
.r; !/

�
EH
.r; !/ D ��1

EB
.r; !/

9>>>>>=>>>>>;
: (2.23)

Implicitly, the constitutive dyadic �
EB
.r; !/ is nonsingular. Caution should be exercised here,

since singular constitutive dyadics are known to occur [9], albeit rarely.
The Tellegen constitutive relations (2.22) are used in the remainder of this book. For

brevity, the subscript “EH” on the constitutive dyadics is omitted. For the same reason, ! is
omitted from the argument list for the electromagnetic fields and sources. Thus, the Tellegen
constitutive relations are written as

D.r/ D " .r/ �E.r/C � .r/ �H.r/

B.r/ D � .r/ �E.r/C � .r/ �H.r/

)
: (2.24)
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If a material is spatially homogeneous, its constitutive relations are written even more simply as

D.r/ D " �E.r/C � �H.r/

B.r/ D � �E.r/C � �H.r/

)
: (2.25)

2.4 CONSTITUTIVEDYADICS
As is clear from the Tellegen constitutive relations (2.25), the most general linear homogeneous
material is characterized by four 3 � 3 constitutive dyadics—namely, the permittivity dyadic
", the permeability dyadic �, and the two magnetoelectric dyadics � and �. Thus, a total of 36
complex-valued constitutive parameters specify a general linear material. Spacetime symmetries
greatly reduce the dimensionality of the constitutive-parameter space for many materials of in-
terest [10], as illustrated in the following subsections.

2.4.1 ISOTROPICANDBI-ISOTROPICMATERIALS
In isotropic dielectric-magnetic materials, the induction fields are aligned wholly parallel to the
primitive fields. Hence, their constitutive dyadics are of the form

" D "I

� D 0

� D 0

� D �I

9>>>>>>=>>>>>>;
; " 2 C; � 2 C; (2.26)

where C is the set of all complex numbers. Furthermore,� D �0 for isotropic dielectric materials
and " D "0 for isotropic magnetic materials.

A bi-isotropic material displays both isotropy and magnetoelectric coupling. The consti-
tutive dyadics of bi-isotropic materials are of the form

" D "I

� D �I

� D �I

� D �I

9>>>>>>=>>>>>>;
; " 2 C; � 2 C; � 2 C; � 2 C : (2.27)

An important special case occurs if � D �� ¤ 0; then the material is an isotropic chiral material
or a reciprocal bi-isotropic material [11]. The optical activity of such materials can be harnessed
to discriminate between left-handed and right-handed electromagnetic fields [12]. The case � D

� ¤ 0 is also a notable one, at least from a theoretical standpoint. This is the case for topological
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insulators [13], but it is physically appropriate to incorporate surface states leading to jump
conditions across interfaces and setting � D � D 0 [14].

Although the 3 � 3 constitutive dyadics of bi-isotropic materials are simply scalar multi-
ples of I , the induction fields are generally not alignedwith the primitive fields in thesematerials,
unlike in isotropic dielectric-magnetic materials. However, key electromagnetic characteristics,
such as those pertaining to planewave propagation, are independent of direction in bi-isotropic
materials.

2.4.2 ANISOTROPICANDBIANISOTROPICMATERIALS
Many naturally occurring and engineered materials exhibit anisotropy, i.e., direction-dependent
characteristics [15]. Nontrivial dyadics—as opposed to dyadics that are simply scalar multiples
of I—are needed to relate the induction field phasors to the primitive field phasors for such
materials.

In an anisotropic dielectric-magnetic material, the induction field D is anisotropically
coupled to the primitive field E and/or the induction field H is anisotropically coupled to the
primitive field B . Hence, the constitutive dyadics obey the following constraints:

" ¤ "I

� D 0

� D 0

� ¤ �I

9>>>>>>=>>>>>>;
: (2.28)

Whereas � D �0I for an anisotropic dielectric material, " D "0I for an anisotropic magnetic
material. For a general anisotropic dielectric-magnetic material, the non-trivial constitutive
dyadics may be represented by the 3 � 3 Cartesian matrixes

" D

24 "xx "xy "xz
"yx "yy "yz
"zx "zy "zz

35
� D

24 �xx �xy �xz
�yx �yy �yz
�zx �zy �zz

35

9>>>>>>>>=>>>>>>>>;
; (2.29)

with all matrix entries being complex valued.
The natural generalization of anisotropy is bianisotropy. In a bianisotropic material, both

induction fields D and H are anisotropically coupled to both primitive fields E and B . Thus,
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the constitutive dyadics for a bianisotropic material satisfy

" ¤ "I

� ¤ �I

� ¤ �I

� ¤ �I

9>>>>>>=>>>>>>;
: (2.30)

For a general bianisotropic material, the constitutive dyadics may be represented by the 3 � 3
Cartesian matrixes (2.29) together with

� D

24 �xx �xy �xz
�yx �yy �yz
�zx �zy �zz

35
� D

24 �xx �xy �xz
�yx �yy �yz
�zx �zy �zz

35

9>>>>>>>>=>>>>>>>>;
; (2.31)

with all matrix entries being complex valued.
The structures of the constitutive dyadics in (2.28) and (2.30) reflect underlying spacetime

symmetries of the materials being characterized. These symmetries are conventionally classified
in terms of 122 discrete magnetic point groups and 21 continuous magnetic point groups (which
encompass the symmetries of isotropic and bi-isotropic materials as degenerate cases) [10, 16–
18].Themagnetic point group with the lowest symmetry, namely C1 in the Schoenflies notation,
is especially noteworthy. For materials in this magnetic point group, the structures of the four
constitutive dyadics ", �, �, and � are completely arbitrary; i.e., a total of 36 complex-valued
constitutive scalars are necessary. However, most commonly encountered anisotropic and bian-
isotropic materials exhibit substantial degrees of spacetime symmetry and, accordingly, far fewer
constitutive scalars are needed to characterize them.

The simplest form of anisotropy is exemplified by uniaxial materials, for which the con-
stitutive dyadics take the form

� D �1I C �2um um; �1 2 C; �2 2 C; � 2 f"; �; �; �g : (2.32)

There is just one distinguished direction, identified by the unit vector um. In crystal optics, a
uniaxial dielectric material is characterized by

" D "1I C "2um um

� D 0

� D 0

� D �0I

9>>>>>>=>>>>>>;
; "1 2 R; "2 2 R ; (2.33)
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with um pointing in the direction of the optic axis [8] and R being the set of all real numbers.
That is, ˙um identify the special directions along which plane waves propagate with only one
phase speed. Parenthetically, um is also aligned with the optic ray axis that represents the special
direction along which plane waves propagate with only one energy speed [19].

On generalizing the anisotropy represented in (2.32), constitutive dyadics of the form

� D �1I C �2um um C �3un un;

�1 2 C; �2 2 C; �3 2 C; � 2 f"; �; �; �g ; (2.34)

emerge. These constitutive dyadics characterize orthorhombic biaxial materials. Herein the unit
vectors um and un are mutually orthogonal. There are two distinguished directions here but the
formulation (2.34) is not particularly insightful, as a physical interpretation of um and un is
not readily forthcoming. The distinguished directions may be better appreciated by considering
the following alternative formulation: for example, an orthorhombic dielectric material that is
neither dissipative nor active may be characterized by [8, 20]

" D "pI C "q

�
up uq C uq up

�
� D 0

� D 0

� D �0I

9>>>>>>=>>>>>>;
; "p 2 R; "q 2 R : (2.35)

The unit vectors up and uq herein are aligned with the optic ray axes [21]; that is, they are aligned
with the two directions along which plane waves propagate with only one energy speed. Notice
that in the case of biaxial dielectric materials the two optic ray axes do not generally coincide
with the two optic axes (which represent the directions along which plane waves propagate with
only one phase speed) [10, 19].

The uniaxial and biaxial constitutive dyadics present in (2.32) and (2.34) are symmetric.
Antisymmetric constitutive dyadics are also commonly encountered, notably in the context of
gyrotropic materials which are characterized by constitutive dyadics of the form

� D �1I C �2um um C �3um � I ;

�1 2 C; �2 2 C; �3 2 C; � 2 f"; �; �; �g : (2.36)

For example, a nondissipative magnetically biased ferrite may characterized by [22]

" D "0I

� D 0

� D 0

� D �1I C �2um um C i�3um � I

9>>>>>>=>>>>>>;
; �1 2 R; �2 2 R; �2 2 R ; (2.37)
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where the unit vector um is aligned with the direction of the biasing magnetic field. An example
of gyrotropy in a bianisotropic setting arises in the case of Faraday chiral materials. These are
characterized by constitutive dyadics of the form [23]

" D "1I C "2um um C i"3um � I

� D i
�
�1I C �2um um C i�3um � I

�
� D ��

� D �1I C �2um um C i�3um � I

9>>>>>>=>>>>>>;
; (2.38)

�1 2 R; �2 2 R; �2 2 R; � 2 f"; �; �g ; (2.39)

in the absence of dissipation. For dissipative Faraday chiral materials, the constitutive parameters
�1, �2, and �3, � 2 f"; �; �g, are complex valued.

Naturally occurring materials which exhibit appreciable bianisotropic effects, under nor-
mal environmental conditions, are relatively scarce. However, artificial materials with substantial
bianisotropic effects may be readily realized. Such materials can be conceptualized as homog-
enized composite materials, arising from constituent materials which are not themselves bian-
isotropic (or even anisotropic in some cases) [24].

Far from being an esoteric property, bianisotropy is actually a ubiquitous one [10]. From
the perspective of special relativity, isotropy is not invariant under the Lorentz transformation.
For example, a material which is an isotropic dielectric material with respect to one inertial
reference frame is a bianisotropic material with respect to another inertial reference frame. Fur-
thermore, from the perspective of general relativity, free space subjected to a gravitational field
is electromagnetically equivalent to a nonhomogeneous bianisotropic material [25, 26].

2.5 WAVEPROPAGATION
Let us consider wave propagation in a homogeneous bianisotropic material described by the
constitutive relations (2.25), with constitutive dyadics (2.29) and (2.30). Suppose that the spatial
variation of all field phasors is of the form exp Œiq.x cos C y sin /� in the xy plane, with q
being a complex-valued wavenumber and the angle  2 Œ0; 2�/. In particular, the field phasors
are expressed as

E.r/ D e.z/ exp Œiq.x cos C y sin /�
H.r/ D h.z/ exp Œiq.x cos C y sin /�

)
; (2.40)

with auxiliary phasors

e.z/ D ex.z/ux C ey.z/uy C ez.z/uz

h.z/ D hx.z/ux C hy.z/uy C hz.z/uz

)
: (2.41)
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The spatial variation along the z axis will be determined in due course. In the absence of
sources, propagation is dictated by the frequency-domain Maxwell curl postulates (2.16)1;2 with
J ext.r/ � 0.

2.5.1 MATRIXORDINARYDIFFERENTIALEQUATION
The combination of the constitutive relations (2.25) and the source-free counterparts of the
frequency-domain Maxwell curl postulates (2.16)1;2, together with the field phasor representa-
tion (2.40), delivers the system of four coupled ordinary differential equations

d

dz
ex.z/ D i!

h
�yxex.z/C �yyey.z/C

�
�yz C

q

!
cos 

�
ez.z/

C �yxhx.z/C �yyhy.z/C �yzhz.z/
�

d

dz
ey.z/ D �i!

h
�xxex.z/C �xyey.z/C

�
�xz �

q

!
sin 

�
ez.z/

C �xxhx.z/C �xyhy.z/C �xzhz.z/
�

d

dz
hx.z/ D �i!

h
"yxex.z/C "yyey.z/C "yzez.z/

C �yxhx.z/C �yyhy.z/C

�
�yz �

q

!
cos 

�
hz.z/

i
d

dz
hy.z/ D i!

h
"xxex.z/C "xyey.z/C "xzez.z/

C �xxhx.z/C �xyhy.z/C

�
�xz C

q

!
sin 

�
hz.z/

i

9>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>;

; (2.42)

as well as the two algebraic equations

"zzez.z/C �zzhz.z/ D �"zxex.z/ � "zyey.z/

�

�
�zx �

q

!
sin 

�
hx.z/ �

�
�zy C

q

!
cos 

�
hy.z/

�zzez.z/C �zzhz.z/ D �

�
�zx C

q

!
sin 

�
ex.z/ �

�
�zy �

q

!
cos 

�
ey.z/

��zxhx.z/ � �zyhy.z/

9>>>>>>=>>>>>>;
: (2.43)

Provided that the remote possibility of

"zz�zz D �zz�zz (2.44)

is discounted, the two algebraic equations (2.43) may be solved to obtain the following explicit
expressions for the z-directed components of the auxiliary phasors:

ez.z/ D �eezxex.z/C �eezyey.z/C �ehzxhx.z/C �ehzyhy.z/

hz.z/ D �hezxex.z/C �hezyey.z/C �hhzxhx.z/C �hhzy hy.z/

)
: (2.45)
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Herein, the coefficients

�eezx D �
�zz"zx � �zz Œ�zx C .q=!/ sin �

"zz�zz � �zz�zz

�eezy D �
�zz"zy � �zz

�
�zy � .q=!/ cos 

�
"zz�zz � �zz�zz

�ehzx D
�zz�zx � �zz Œ�zx � .q=!/ sin �

"zz�zz � �zz�zz

�ehzy D
�zz�zy � �zz

�
�zy C .q=!/ cos 

�
"zz�zz � �zz�zz

�hezx D
�zz"zx � "zz Œ�zx C .q=!/ sin �

"zz�zz � �zz�zz

�hezy D
�zz"zy � "zz

�
�zy � .q=!/ cos 

�
"zz�zz � �zz�zz

�hhzx D �
"zz�zx � �zz Œ�zx � .q=!/ sin �

"zz�zz � �zz�zz

�hhzy D �
"zz�zy � �zz

�
�zy C .q=!/ cos 

�
"zz�zz � �zz�zz

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

: (2.46)

The explicit expressions for ez.z/ and hz.z/ given in (2.45) may be substituted into the
system of ordinary differential equations (2.42) to obtain the 4 � 4 matrix ordinary differential
equation

d

dz

h
f .z/

i
D i

h
P
i

�

h
f .z/

i
: (2.47)

Herein, the 4-column vector

h
f .z/

i
D

2666664
ex.z/

ey.z/

hx.z/

hy.z/

3777775 ; (2.48)
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while the 4 � 4 matrix

h
P
i

D !

0BB@
2664

�yx �yy �yx �yy
��xx ��xy ��xx ��xy
�"yx �"yy ��yx ��yy
"xx "xy �xx �xy

3775 C

266664
�yz C

q

!
cos 0 0 0

0 ��xz C
q

!
sin 0 0

0 0 �"yz 0

0 0 0 "xz

377775 �

h
J
i

�

2664
�eezx 0 0 0

0 �eezy 0 0

0 0 �ehzx 0

0 0 0 �ehzy

3775C

266664
�yz 0 0 0

0 ��xz 0 0

0 0 ��yz C
q

!
cos 0

0 0 0 �xz C
q

!
sin 

377775 �

h
J
i

�

2664
�hezx 0 0 0

0 �hezy 0 0

0 0 �hhzx 0

0 0 0 �hhzy

3775
1CCCCA

(2.49)

is expressed using the 4 � 4 matrix

h
J
i

D

2664
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

3775 : (2.50)

2.5.2 TRANSFERMATRIX
Since the bianisotropic material under consideration is homogeneous, the matrix

h
P
i

on the
right side of (2.47) does not depend upon z (or indeed x and y). Accordingly, the solution of
(2.47) is given as [27] h

f .z/
i

D exp
n
i
h
P
i
z
o

�

h
f .0/

i
(2.51)

when the boundary value of
h
f .z/

i
is specified at z D 0. The matrizanth
M.z/

i
D exp

n
i
h
P
i
z
o

(2.52)

satisfies the matrix ordinary differential equation

d

dz

h
M.z/

i
D i

h
P
i

�

h
M.z/

i
(2.53)

subject to the boundary condition h
M.0/

i
D

h
I
i
; (2.54)




