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ABSTRACT

Graphs are useful data structures in complex real-life applications such as modeling physical sys-
tems, learning molecular fingerprints, controlling traffic networks, and recommending friends
in social networks. However, these tasks require dealing with non-Euclidean graph data that
contains rich relational information between elements and cannot be well handled by tradi-
tional deep learning models (e.g., convolutional neural networks (CNNs) or recurrent neural
networks (RNNs)). Nodes in graphs usually contain useful feature information that cannot be
well addressed in most unsupervised representation learning methods (e.g., network embedding
methods). Graph neural networks (GNNs) are proposed to combine the feature information
and the graph structure to learn better representations on graphs via feature propagation and
aggregation. Due to its convincing performance and high interpretability, GNN has recently
become a widely applied graph analysis tool.

'This book provides a comprehensive introduction to the basic concepts, models, and ap-
plications of graph neural networks. It starts with the introduction of the vanilla GNN model.
Then several variants of the vanilla model are introduced such as graph convolutional networks,
graph recurrent networks, graph attention networks, graph residual networks, and several general
frameworks. Variants for different graph types and advanced training methods are also included.
As for the applications of GNNSs, the book categorizes them into structural, non-structural, and
other scenarios, and then it introduces several typical models on solving these tasks. Finally, the
closing chapters provide GNN open resources and the outlook of several future directions.

KEYWORDS
deep graph learning, deep learning, graph neural network, graph analysis, graph

convolutional network, graph recurrent network, graph residual network
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Preface

Deep learning has achieved promising progress in many fields such as computer vision and natu-
ral language processing. The data in these tasks are usually represented in the Euclidean domain.
However, many learning tasks require dealing with non-Euclidean graph data that contains rich
relational information between elements, such as modeling physical systems, learning molecular
fingerprints, predicting protein interface, etc. Graph neural networks (GNNs) are deep learning-
based methods that operate on graph domains. Due to its convincing performance and high
interpretability, GNN has recently been a widely applied graph analysis method.

'The book provides a comprehensive introduction to the basic concepts, models, and appli-
cations of graph neural networks. It starts with the basics of mathematics and neural networks. In
the first chapters, it gives an introduction to the basic concepts of GNNs, which aims to provide
a general overview for readers. Then it introduces different variants of GNNs: graph convolu-
tional networks, graph recurrent networks, graph attention networks, graph residual networks,
and several general frameworks. These variants tend to generalize different deep learning tech-
niques into graphs, such as convolutional neural network, recurrent neural network, attention
mechanism, and skip connections. Further, the book introduces different applications of GNNs
in structural scenarios (physics, chemistry, knowledge graph), non-structural scenarios (image,
text) and other scenarios (generative models, combinatorial optimization). Finally, the book lists
relevant datasets, open source platforms, and implementations of GNNs.

'This book is organized as follows. After an overview in Chapter 1, we introduce some
basic knowledge of math and graph theory in Chapter 2. We show the basics of neural networks
in Chapter 3 and then give a brief introduction to the vanilla GNN in Chapter 4. Four types of
models are introduced in Chapters 5, 6, 7, and 8, respectively. Other variants for difterent graph
types and advanced training methods are introduced in Chapters 9 and 10. Then we propose
several general GNN frameworks in Chapter 11. Applications of GNN in structural scenarios,
nonstructural scenarios, and other scenarios are presented in Chapters 12, 13, and 14. And
finally, we provide some open resources in Chapter 15 and conclude the book in Chapter 16.

Zhiyuan Liu and Jie Zhou
March 2020
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CHAPTER 1

Introduction

Graphs are a kind of data structure which models a set of objects (nodes) and their relation-
ships (edges). Recently, researches of analyzing graphs with machine learning have received
more and more attention because of the great expressive power of graphs, i.e., graphs can be
used as denotation of a large number of systems across various areas including social science (so-
cial networks) [Hamilton et al., 2017b, Kipf and Welling, 2017], natural science (physical sys-
tems [Battaglia etal., 2016, Sanchez et al., 2018] and protein-protein interaction networks [Fout
etal., 2017]), knowledge graphs [Hamaguchi et al., 2017] and many other research areas [ Khalil
etal., 2017]. As a unique non-Euclidean data structure for machine learning, graph draws atten-
tion on analyses that focus on node classification, link prediction, and clustering. Graph neural
networks (GNNGs) are deep learning-based methods that operate on graph domain. Due to its
convincing performance and high interpretability, GNN has been a widely applied graph analy-
sis method recently. In the following paragraphs, we will illustrate the fundamental motivations

of GNNE.

1.1  MOTIVATIONS

1.1.1 CONVOLUTIONAL NEURAL NETWORKS

Firstly, GNNs are motivated by convolutional neural networks (CNNs) LeCun et al. [1998].
CNNss is capable of extracting and composing multi-scale localized spatial features for features
of high representation power, which have result in breakthroughs in almost all machine learning
areas and the revolution of deep learning. As we go deeper into CNNs and graphs, we find the
keys of CNNs: local connection, shared weights, and the use of multi-layer [LeCun et al., 2015].
'These are also of great importance in solving problems of graph domain, because (1) graphs are
the most typical locally connected structure, (2) shared weights reduce the computational cost
compared with traditional spectral graph theory [Chung and Graham, 1997], (3) multi-layer
structure is the key to deal with hierarchical patterns, which captures the features of various sizes.
However, CNNs can only operate on regular Euclidean data like images (2D grid) and text (1D
sequence), which can also be regarded as instances of graphs. Therefore, it is straightforward to
think of finding the generalization of CNNs to graphs. As shown in Figure 1.1, it is hard to
define localized convolutional filters and pooling operators, which hinders the transformation
of CNN from Euclidean to non-Euclidean domain.




2 1. INTRODUCTION

Figure 1.1: Left: image in Euclidean space. Right: graph in non-Euclidean space.

1.1.2 NETWORKEMBEDDING

'The other motivation comes from graph embedding [Cai et al., 2018, Cui et al., 2018, Goyal and
Ferrara, 2018, Hamilton et al., 2017a, Zhang et al., 2018a], which learns to represent graph
nodes, edges, or subgraphs in low-dimensional vectors. In graph analysis, traditional machine
learning approaches usually rely on hand-engineered features and are limited by its inflexibility
and high cost. Following the idea of representation learning and the success of word embed-
ding [Mikolov et al., 2013], DeepWalk [Perozzi et al., 2014], which is regarded as the first
graph embedding method based on representation learning, applies SkipGram model [Mikolov
etal.,, 2013] on the generated random walks. Similar approaches such as node2vec [Grover and
Leskovec, 2016], LINE [Tang et al., 2015], and TADW [Yang et al., 2015b] also achieved
breakthroughs. However, these methods suffer from two severe drawbacks [Hamilton et al.,
2017a]. First, no parameters are shared between nodes in the encoder, which leads to computa-
tional inefficiency, since it means the number of parameters grows linearly with the number of
nodes. Second, the direct embedding methods lack the ability of generalization, which means
they cannot deal with dynamic graphs or be generalized to new graphs.

1.2 RELATED WORK

There exist several comprehensive reviews on GNNs. Monti et al. [2017] propose a unified
framework, MoNet, to generalize CNN architectures to non-Euclidean domains (graphs and
manifolds) and the framework could generalize several spectral methods on graphs [Atwood and
Towsley, 2016, Kipf and Welling, 2017] as well as some models on manifolds [Boscaini et al.,
2016, Masci et al., 2015]. Bronstein et al. [2017] provide a thorough review of geometric deep
learning, which presents its problems, difficulties, solutions, applications, and future directions.
Monti et al. [2017] and Bronstein et al. [2017] focus on generalizing convolutions to graphs
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or manifolds, while in this book we only focus on problems defined on graphs and we also
investigate other mechanisms used in GNNs such as gate mechanism, attention mechanism, and
skip connections. Gilmer et al. [2017] propose the message passing neural network (MPNN)
which could generalize several GNN and graph convolutional network approaches. Wang et al.
[2018b] propose the non-local neural network (NLNN) which unifies several “self-attention”-
style methods. However, in the original paper, the model is not explicitly defined on graphs.
Focusing on specific application domains, Gilmer et al. [2017] and Wang et al. [2018b] only
give examples of how to generalize other models using their framework and they do not provide
a review over other GNN models. Lee et al. [2018b] provides a review over graph attention
models. Battaglia et al. [2018] propose the graph network (GN) framework which has a strong
capability to generalize other models. However, the graph network model is highly abstract
and Battaglia et al. [2018] only give a rough classification of the applications.

Zhang et al. [2018f] and Wu et al. [2019¢] are two comprehensive survey papers on
GNNs and they mainly focus on models of GNN. Wu et al. [2019¢] categorize GNNs into
four groups: recurrent graph neural networks (RecGNNs), convolutional graph neural net-
works (ConvGNNs), graph auto-encoders (GAEs), and spatial-temporal graph neural networks
(STGNNG). Our book has a different taxonomy with Wu et al. [2019¢]. We present graph re-
current networks in Chapter 6. Graph convolutional networks are introduced in Chapter 5 and
a special variant of ConvGNNS, graph attention networks, are introduced in Chapter 7. We
present the graph spatial-temporal networks in Section 9.4 as the models are usually used on
dynamic graphs. We introduce graph auto-encoders in Section 10.4 as they are trained in an
unsupervised fashion.

In this book, we provide a thorough introduction to different GNN models as well as a
systematic taxonomy of the applications. To summarize, the major contents of this book are as
tollows.

* We provide a detailed review over existing GNN models. We introduce the original model,
its variants and several general frameworks. We examine various models in this area and
provide a unified representation to present different propagation steps in different models.
One can easily make a distinction between different models using our representation by
recognizing corresponding aggregators and updaters.

* We systematically categorize the applications and divide them into structural scenarios,
non-structural scenarios, and other scenarios. For each scenario, we present several major
applications and their corresponding methods.







CHAPTER 2

Basics of Math and Graph

2.1 LINEARALGEBRA

'The language and concepts of linear algebra have come into widespread usage in many fields
in computer science, and machine learning is no exception. A good comprehension of machine
learning is based upon a thoroughly understanding of linear algebra. In this section, we will
briefly review some important concepts and calculations in linear algebra, which are necessary
for understanding the rest of the book. In this section, we review some basic concepts and cal-
culations in linear algebra which are necessary for understanding the rest of the book.

2.1.1 BASIC CONCEPTS
* Scalar: A number.

* Vector: A column of ordered numbers, which can be expressed as the following:

X1

x = xf . 2.1)

Xn

'The norm of a vector measures its length. The L, norm is defined as follows:

x|, = (Z |xi|1’) : (2.2)
i=1

The Ly norm, L, norm and L norm are often used in machine learning.
'The L; norm can be simplified as

n

Xl =) il (2.3)

i=1

In Euclidean space R”, the L, norm is used to measure the length of vectors, where

Ixlla= | D 2. (2.4)
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The Lo norm is also called the max norm, as

[1X|loo = max [xi. (2.5)

With L, norm, the distance of two vectors x1, X2 (where x; and x5 are in the same linear
space) can be defined as

Dp(x1,%2) = |[x1 — X2]p- (2.6)

A set of vectors X1, Xp, - -+ , X, are linearly independent if and only if there does not exist
a set of scalars A1, Ao, -+ , A, which are not all 0, such that

A]X] +)LzX2 —|—+/1me =0. (27)

* Matrix: A two-dimensional array, which can be expressed as the following:

ail diz ... din
dz1 dz2 ... d2p

A= ] o ] , (2.8)
Aml Am2 ... Amn

where A € R™*",

Given two matrices A € R”” and B € R"*?, the matrix product of AB can be denoted
as C € R™*? where

n
Cij = Y _ AuBy;. (2.9)
k=1

It can be proved that matrix product is associative but not necessarily commutative. In
mathematical language,

(AB)C = A(BC) (2.10)

holds for arbitrary matrices A, B, and C (presuming that the multiplication is legitimate).
Yet

AB = BA (2.11)

is not always true.
For each n x n square matrix A, its determinant (also denoted as |A|) is defined as

det(A) = Y (=) ®RFay e an, - ang,. (2.12)
kikokn
where k k5 - - -k, isa permutationof 1,2, --- ,nand t(k1k» - - - k) is the inversion number

of the permutation k1k, - - - k,, which is the number of inverted sequence in the permu-

tation.
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If matrix A is a square matrix, which means that m = n, the inverse matrix of A (denoted
as A™1) satisfies that
ATTA =1, (2.13)

where I is the n x n identity matrix. A~! exists if and only if |A| # 0.
The transpose of matrix A is represented as A7, where

Al =Aj. (2.14)

There is another frequently used product between matrices called Hadamard product.
'The Hadamard product of two matrices A € R"™*" and B € R™*" is a matrix C € R"*",
where

C,’j = AijB,'j. (215)

* Tensor: An array with arbitrary dimension. Most matrix operations can also be applied to
tensors.

2.1.2 EIGENDECOMPOSITION

Let A be a matrix in R”*". A nonzero vector v € C” is called an eigenvector of A if there exists
such scalar A € C that
Av = Av. (2.16)

Here scalar A is an eigenvalue of A corresponding to the eigenvector v. If matrix A has n
eigenvectors {vi,va,---,V,} that are linearly independent, corresponding to the eigenvalue

{A1, A2, , Ay}, then it can be deduced that

A1
Az
A[Vl Vo o vn]z[vl Vo o o... vn] ) . 2.17)
An

LetV = [ Vi Vo ... Vp ]; then it is clear that V is an invertible matrix. We have the eigen-

decomposition of A (also called diagonalization)
A = Vdiag(M)V™L. (2.18)

It can also be written in the following form:
A= diviv]. (2.19)
i=1

However, not all square matrices can be diagonalized in such form because a matrix may not
have as many as n linear independent eigenvectors. Fortunately, it can be proved that every real

symmetric matrix has an eigendecomposition.
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2.1.3 SINGULAR VALUE DECOMPOSITION

As eigendecomposition can only be applied to certain matrices, we introduce the singular value
decomposition, which is a generalization to all matrices.

First we need to introduce the concept of singular value. Let r denote the rank of AT A,
then there exist r positive scalars 01 > 0, > --- > 0, > Osuch thatfor 1 <i <r,v; is an eigen-
vector of AT A with corresponding eigenvalue o2. Note that vy, vz, -+ ,v, are linearly inde-
pendent. The r positive scalars 07,02, - -+ , 0, are called singular values of A. Then we have the
singular value decomposition

A=UzVT, (2.20)

where U € R™ and V (n x n) are orthogonal matrices and X is an m X n matrix defined as
follows:
o;j ifi=j<r,

i = .
Y 0 otherwise.

In fact, the column vectors of U are eigenvectors of AAT, and the eigenvectors of AT A are made
up of the the column vectors of V.

2.2  PROBABILITY THEORY

Uncertainty is ubiquitous in the field of machine learning, thus we need to use probability theory
to quantify and manipulate the uncertainty. In this section, we review some basic concepts and

classic distributions in probability theory which are essential for understanding the rest of the
book.

2.2.1  BASIC CONCEPTS AND FORMULAS

In probability theory, a random variable is a variable that has a random value. For instance, if
we denote a random value by X, which has two possible values x1 and x,, then the probability
of X equals to xy is P(X = x1). Clearly, the following equation remains true:

P(X =x;)+P(X =x3) = 1. (2.21)

Suppose there is another random variable Y that has y; as a possible value. The probability
that X = xyand Y = y; iswrittenas P(X = x1,Y = y1), which is called the joint probability
OfX = X1 andY =)

Sometimes we need to know the relationship between random variables, like the prob-
ability of X = x; on the condition that ¥ = y;, which can be written as P(X = x1|Y = yj).
We call this the conditional probability of X = x; given Y = y;. With the concepts above, we
can write the following two fundamental rules of probability theory:

P(X=x)=) P(X=xY=y), (2.22)
Yy
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P(X=x,Y =y)=P(Y =y|X =x)P(X = x). (2.23)
'The former is the sum rule while the latter is the product rule. Slightly modifying the form of

product rule, we get another useful formula:

P(X =x,Y =
P = yIX =) = P(Xx:x) =

_PX =x|Y =y)P(Y =Y)
N P(X = x)

(2.24)

which is the famous Bayes formula. Note that it also holds for more than two variables:

P(Y = y|Xi = xi)P(X; = xi)

P(X;i =x;|Y =y) = ) (2.25)
o Yo P(Y = y|X; = x)P(X; = x;)
Using product rule, we can deduce the chain rule:
P(Xl = xla”' 7Xn :xn)
n
(2.26)
=P(Xy =x) [[PXi = x| X1 = x1.+ . Xicy = xim1),
i=2
where X1, X5, -+, X,, are n random variables.

'The average value of some function f(x) (where x is the value of a certain random variable) under
a probability distribution P(x) is called the expectation of f(x). For a discrete distribution, it
can be written as

E[f(x)] =Y P(x)f(x). (2.27)

Usually, when f(x) = x, E[x] stands for the expectation of x.
To measure the dispersion level of f(x) around its mean value E[ f(x)], we introduce the vari-
ance of f(x):
Var(f(x)) = E[(f(x) = E[f(x)])’]
=E[f(x)’] - E[f(0)]*.
'The standard deviation is the square root of variance. In some level, covariance expresses the
degree to which two variables vary together:

Cov(f(x),g(y)) = E[(f(x) = E[f(x)D(g(») = E[g(»)D]. (2.29)

Greater covariance indicates higher relevance between f(x) and g(y).

(2.28)

2.2.2 PROBABILITY DISTRIBUTIONS

Probability distributions describe the probability of a random variable or several random vari-
ables on every state. Several distributions that are useful in the area of machine learning are listed
as follows.
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* Gaussian distribution: it is also known as normal distribution and can be expressed as:

N (x|u, 02) = exp (—#(x - u)z) , (2.30)

2m02
where 1 is the mean of variable x and o2 is the variance.

* Bernoulli distribution: random variable X can either be 0 or 1, with a probability P(X =
1) = p. Then the distribution function is

PX=x)=p"(1-p' ™~ xe{01}. (2.31)
It is quite obvious that E(X) = p and Var(X) = p(1 — p).

* Binomial distribution: repeat the Bernoulli experiment for N times and the times that X
equals to 1 is denote by Y, then

P(Y =k)= (IZ) pFa—pNk (2.32)

is the Binomial distribution satisfying that E(Y) = np and Var(Y) = np(1 — p).

* Laplace distribution: the Laplace distribution is described as

P(x|p,b) = %exp (-'x;"'). (2.33)

2.3 GRAPH THEORY

Graphs are the basic subjects in the study of GNNs. Therefore, to get a comprehensive under-
standing of GNN, the fundamental graph theory is required.

2.3.1 BASIC CONCEPTS

A graph is often denoted by G = (V, E), where V is the set of vertices and E is the set of edges.
An edge e = u, v has two endpoints u and v, which are said to be joined by e. In this case, u
is called a neighbor of v, or in other words, these two vertices are adjacent. Note that an edge
can either be directed or undirected. A graph is called a directed graph if all edges are directed
or undirected graph if all edges are undirected. The degree of vertice v, denoted by d(v), is the
number of edges connected with v.

2.3.2 ALGEBRA REPRESENTATIONS OF GRAPHS

There are a few useful algebra representations for graphs, which are listed as follows.
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* Adjacency matrix: for a simple graph G = (V, E) with n-vertices, it can be described by
an adjacency matrix A € R™", where

1 if{v;,vj} € Eandi # j,

Ay = ,
Y 0 otherwise.

It is obvious that such matrix is a symmetric matrix when G is an undirected graph.

* Degree matrix: for a graph G = (V, E) with n-vertices, its degree matrix D € R"*" is a
diagonal matrix, where
Di; = d(v;).

* Laplacian matrix: for a simple graph G = (V, E) with n-vertices, if we consider all edges
in G to be undirected, then its Laplacian matrix L € R"*” can be defined as

L=D-A.
Thus, we have the elements:
d(vi) ifi =],
Lij =4 —1 if{vi,v;} € Eandi # j,
0 otherwise.

Note that the graph is considered to be an undirected graph for the adjacency matrix.
* Symmetric normalized Laplacian: the symmetric normalized Laplacian is defined as:
, 11
L™ =D 2LD"2
—1-D72ADZ.
'The elements are given by:
1 ifi = j and d(v;) # 0,
sym 1 . . 1 1
Li; = Vdwi)d(v;) if i, vi €k and i # /.
0 otherwise.
* Random walk normalized Laplacian: it is defined as:
L' =D 'L=1-D""A.
'The elements can be computed by:

1 ifi = j and d(v;) # 0,
LjP = _#Ui) if{vi,v;} € Eandi # j,
0 otherwise.
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* Incidence matrix: another common used matrix in representing a graph is incidence ma-
trix. For a directed graph G = (V, E) with n-vertices and m-edges, the corresponding
incidence matrix is M € R"*™ where

1 if3k st e; = {vi, vk},
M,’j = —1 if3k s.t ej = {Uk, Ui}a
0  otherwise.

For a undirected graph, the corresponding incidence matrix satisfies that

1 if 3k 5.t e; = {vi, vi},

My =
! 0 otherwise.
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CHAPTER 3

Basics of Neural Networks

Neural networks are one of the most important models in machine learning. The structure of
artificial neural networks, which consists of numerous neurons with connections to each other,
bears great resemblance to that of biological neural networks. A neural network learns in the fol-
lowing way: initiated with random weights or values, the connections between neurons updates
its weights or values by the back propagation algorithm repeatedly till the model performs rather
precisely. In the end, the knowledge that a neural network learned is stored in the connections
in a digital manner. Most of the researches on neural network try to change the way it learns
(with different algorithms or different structures), aiming to improve the generalization ability
of the model.

3.1 NEURON

'The basic units of neural networks are neurons, which can receive a series of inputs and return
the corresponding output. A classic neuron is as shown in Figure 3.1. Where the neuron re-
ceives n inputs X1, X2, -+ , X, with corresponding weights wq, wa, -+ , w, and an offset 5. Then
the weighted summation y = ) 7_, w;x; + b passes through an activation function f and the
neuron returns the output z = f(y). Note that the output will be the input of the next neuron.
'The activation function is a kind of function that maps a real number to a number between
0 and 1 (with rare exceptions), which represents the activation of the neuron, where 0 indi-
cates deactivated and 1 indicates fully activated. Several useful activation functions are shown as
follows.

+ Sigmoid Function (Figure 3.2):
1

= . 3.1
o) = (6.1)
* Tanh Function (Figure 3.3):
X — X

h(x) = ———. 3.2
tanh(x) e (3.2)

* ReLU (Rectified Linear Unit) (Figure 3.4):

0 x<O0,

ReLU(x) = (3.3)

x x>0.
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GO
OO
: /
O
Figure 3.1: A classic neuron structure.

0.8

0.6

Figure 3.2: The Sigmoid function.

In fact, there are many other activation functions and each has its corresponding derivatives.
But do remember that a good activation function is always smooth (which means that it is a
continuous differentiable function) and easily calculated (in order to minimize the computa-
tional complexity of the neural network). During the training of a neural network, the choice of
activation function is usually essential to the outcome.

3.2 BACKPROPAGATION

During the training of a neural network, the back propagation algorithm is most commonly
used. It is an algorithm based on gradient descend to optimize the parameters in a model. Let’s
take the single neuron model illustrated above for an example. Suppose the optimization target

for the output z is zy, which will be approached by adjusting the parameters wy, ws, -+ , Wy, b.
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Figure 3.3: The Tanh function.
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Figure 3.4: The ReLU (Rectified Linear Unit) function.
By the chain rule, we can deduce the derivative of z with respect to w; and b:
dz 8_2 ady
ow; dy dw;
(3.4)
ACN
= ——X;
dy
dz 9z dy
ob — 0y b
(3.5)
_ ()
dy
With a learning rate of 7, the update for each parameter will be:
Aw; =n(zp — Z)g
o (3.6)

af (y)
dy

=n(zo — 2)xi

15
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Figure 3.5: Feedforward neural network.

Ab = n(zg — z)g—z
af (y)
dy

In summary, the process of the back propagation consists of the following two steps.

(3.7)
=n(z0 — 2)

* Forward calculation: given a set of parameters and an input, the neural network computes
the values at each neuron in a forward order.

* Backward propagation: compute the error at each variable to be optimized, and update
the parameters with their corresponding partial derivatives in a backward order.

'The above two steps will go on repeatedly until the optimization target is acquired.

3.3 NEURALNETWORKS

Recently, there is a booming development in the field of machine learning (especially deep learn-
ing), represented by the appearance of a variety of neural network structures. Though varying
widely, the current neural network structures can be classified into several categories: feedfor-
ward neural networks, convolutional neural networks, recurrent neural networks, and GINNGs.

* Feedforward neural network: The feedforward neural network (FNN) (Figure 3.5) is the
first and simplest network architecture of artificial neural network. The FNN usually con-
tains an input layer, several hidden layers, and an output layer. The feedforward neural
network has a clear hierarchical structure, which always consists of multiple layers of neu-
rons, and each layer is only connected to its neighbor layers. There are no loops in this
network.

* Convolutional neural network: Convolutional neural networks (CNNis) are special ver-
sions of FNNs. FNNs are usually fully connected networks while CNNs preserve the local



3.3. NEURALNETWORKS 17

[“om e i g T 1 | bt

B
]

"
11 i 3 ——
| B T T 304

Figure 3.6: The AlexNet architecture from Krizhevsky et al. [2012].

connectivity. The CNN architecture usually contains convolutional layers, pooling layers,
and several fully connected layers. There exist several classical CNN architectures such as
LeNet5 [LeCun et al., 1998], AlexNet [Krizhevsky et al., 2012] (Figure 3.6), VGG [Si-
monyan and Zisserman, 2014], and GoogLeNet [Szegedy et al., 2015]. CNNs are widely

used in the area of computer vision and proven to be effective in many other research fields.

* Recurrent neural network: In comparison with FNN, the neurons in recurrent neural
network (RNN) receive not only signals and inputs from other neurons, but also its own
historical information. The memory mechanism in recurrent neural network (RNN) help
the model to process series data effectively. However, the RNN usually suffers from the
problem of long-term dependencies [Bengio et al., 1994, Hochreiter et al., 2001]. Several
variants are proposed to solve the problem by incorporating the gate mechanism such as

GRU [Cho et al., 2014] and LSTM [Hochreiter and Schmidhuber, 1997]. The RNN is
widely used in the area of speech and natural language processing.

* Graph neural network: The GNN is designed specifically to handle graph-structured
data, such as social networks, molecular structures, knowledge graphs, etc. Detailed de-
scriptions of GNNs will be covered in the later chapters of this book.



https://www.morganclaypool.com/action/showImage?doi=10.2200/S00980ED1V01Y202001AIM045&iName=master.img-004.jpg&w=414&h=98
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CHAPTER 4

Vanilla Graph Neural Networks

In this section, we describe the vanilla GNNs proposed in Scarselli et al. [2009]. We also list
the limitations of the vanilla GNN in representation capability and training efficiency. After this
chapter we will talk about several variants of the vanilla GNN model.

41 INTRODUCTION

'The concept of GNN was first proposed in Gori et al. [2005], Scarselli et al. [2004, 2009]. For
simplicity, we will talk about the model proposed in Scarselli et al. [2009], which aims to extend
existing neural networks for processing graph-structured data.

A node is naturally defined by its features and related nodes in the graph. The target of
GNN is to learn a state embedding h, € R*, which encodes the information of the neighbor-
hood, for each node. The state embedding h, is used to produce an output o,, such as the
distribution of the predicted node label.

In Scarselli et al. [2009], a typical graph is illustrated in Figure 4.1. The vanilla GNN
model deals with the undirected homogeneous graph where each node in the graph has its input
features x,, and each edge may also have its features. The paper uses co[v] and ne[v] to denote
the set of edges and neighbors of node v. For processing other more complicated graphs such
as heterogeneous graphs, the corresponding variants of GNNs could be found in later chapters.

42 MODEL

Given the input features of nodes and edges, next we will talk about how the model obtains the
node embedding h,, and the output embedding o,,.

In order to update the node state according to the input neighborhood, there is a para-
metric function f, called local transition function, shared among all nodes. In order to produce
the output of the node, there is a parametric function g, called /ocal output function. Then, h,
and o, are defined as follows:

hy, = f(xy, Xcolv]» hne[v]y Xne[v]) (4.1)
0, = g(hy, xy), (42)

where x denotes the input feature and h denotes the hidden state. co[v] is the set of edges
connected to node v and ne[v] is set of neighbors of node v. So that Xy, Xco[v]. Bue[v], Xne[v]
are the features of v, the features of its edges, the states and the features of the nodes in the
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lis)

T =

Figure 4.1: An example of the graph based on Scarselli et al. [2009].

neighborhood of v, respectively. In the example of node /; in Figure 4.1, x;, is the input feature
of I1. co[li] contains edges [(1,4y. [(1,6), [(1,2), and [(3,1). ne[l;] contains nodes /5, I3, l4, and I¢.

LetH, O, X, and Xy be the matrices constructed by stacking all the states, all the outputs,
all the features, and all the node features, respectively. Then we have a compact form as:

H = F(H,X) (4.3)

0=GH,Xy) (4.4)

where F, the global transition function, and G is the global output function. They are stacked
versions of the local transition function f and the local output function g for all nodes in a
graph, respectively. The value of H is the fixed point of Eq. (4.3) and is uniquely defined with
the assumption that F is a contraction map.

With the suggestion of Banach’s fixed point theorem [Khamsi and Kirk, 2011], GNN

uses the following classic iterative scheme to compute the state:
H*t! = FH', X), (4.5)

where H' denotes the th iteration of H. The dynamical system Eq. (4.5) converges exponentially
fast to the solution of Eq. (4.3) for any initial value of H(0). Note that the computations described
in f and g can be interpreted as the FNNGs.



https://www.morganclaypool.com/action/showImage?doi=10.2200/S00980ED1V01Y202001AIM045&iName=master.img-005.jpg&w=288&h=220
https://www.morganclaypool.com/action/showImage?doi=10.2200/S00980ED1V01Y202001AIM045&iName=master.img-005.jpg&w=288&h=220
https://www.morganclaypool.com/action/showImage?doi=10.2200/S00980ED1V01Y202001AIM045&iName=master.img-005.jpg&w=288&h=220
https://www.morganclaypool.com/action/showImage?doi=10.2200/S00980ED1V01Y202001AIM045&iName=master.img-005.jpg&w=288&h=220

4.3. LIMITATIONS 21

After the introduction of the framework of GNN, the next question is how to learn the
parameters of the local transition function f and local output function g. With the target in-
formation (t, for a specific node) for the supervision, the loss can be written as:

»
loss = Z(ti —0;), (4.6)
i=1

where p is the number of supervised nodes. The learning algorithm is based on a gradient-
descent strategy and is composed of the following steps.

* The states hi| are iteratively updated by Eq. (4.1) until a time step 7. Then we obtain an
approximate fixed point solution of Eq. (4.3): H(T') ~ H.

* 'The gradient of weights W is computed from the loss.
* 'The weights W are updated according to the gradient computed in the last step.

After running the algorithm, we can get a model trained for a specific supervised/semi-
supervised task as well as hidden states of nodes in the graph. The vanilla GNN model provides
an effective way to model graphic data and it is the first step toward incorporating neural net-
works into graph domain.

4.3  LIMITATIONS

Though experimental results showed that GNN is a powerful architecture for modeling struc-
tural data, there are still several limitations of the vanilla GNN.

* First, it is computationally inefficient to update the hidden states of nodes iteratively to get
the fixed point. The model needs T steps of computation to approximate the fixed point.
If relaxing the assumption of the fixed point, we can design a multi-layer GNN to get a
stable representation of the node and its neighborhood.

* Second, vanilla GNN uses the same parameters in the iteration while most popular neural
networks use different parameters in different layers, which serves as a hierarchical feature
extraction method. Moreover, the update of node hidden states is a sequential process

which can benefit from the RNN kernels like GRU and LSTM.

* 'Third, there are also some informative features on the edges which cannot be effectively
modeled in the vanilla GNN. For example, the edges in the knowledge graph have the
type of relations and the message propagation through different edges should be differ-
ent according to their types. Besides, how to learn the hidden states of edges is also an
important problem.
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* Last, if T is pretty large, it is unsuitable to use the fixed points if we focus on the repre-
sentation of nodes instead of graphs because the distribution of representation in the fixed

point will be much more smooth in value and less informative for distinguishing each
node.

Beyond the vanilla GNN, several variants are proposed to release these limitations. For
example, Gated Graph Neural Network (GGNN) [Li et al., 2016] is proposed to solve the
first problem. Relational GCN (R-GCN) [Schlichtkrull et al., 2018] is proposed to deal with
directed graphs. More details could be found in the following chapters.






