
	

Series Editors:	 Ronald J. Brachman, Jacobs Technion-Cornell Institute at Cornell Tech
	 Francesca Rossi, AI Ethics Global Leader, IBM Research AI
	 Peter Stone, University of Texas at Austin

Introduction to Logic Programming
Michael Genesereth, Stanford University
Vinay K. Chaudhri, Stanford University

“This is a book for the 21st century: presenting an elegant and innovative perspective on logic
programming. Unlike other texts, it takes datasets as a fundamental notion, thereby bridging
the gap between programming languages and knowledge representation languages; and it
treats updates on an equal footing with datasets, leading to a sound and practical treatment of
action and change.” – Bob Kowalski, Professor Emeritus, Imperial College London

“In a world where Deep Learning and Python are the talk of the day, this book is a
remarkable development. It introduces the reader to the fundamentals of traditional Logic
Programming and makes clear the benefits of using the technology to create runnable
specifications for complex systems.” – Son Cao Tran, Professor in Computer Science, New Mexico
State University

“Excellent introduction to the fundamentals of Logic Programming. The book is well-written
and well-structured. Concepts are explained clearly and the gradually increasing complexity of
exercises makes it so that one can understand easy notions quickly before moving on to more
difficult ideas.” – George Younger, student, Stanford University

store.morganclaypool.com

About SYNTHESIS
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis
books provide concise, original presentations of important research and
development topics, published quickly, in digital and print formats.

G
EN

ESER
E

T
H

 • C
H

A
U

D
H

R
I	

 		

IN
T

R
O

D
U

C
T

IO
N

 T
O

 LO
G

IC
 PR

O
G

R
A

M
M

IN
G

 			

 M
O

R
G

A
N

 &
 C

LA
Y

P
O

O
L

Series ISSN: 1939-4608

Ronald J. Brachman, Francesca Rossi, and Peter Stone, Series Editors

Testimonials for
Introduction to Logic Programming

This is a book for the 21st century: presenting an elegant and innovative perspective on logic
programming. Unlike other texts, it takes datasets as a fundamental notion, thereby bridg-
ing the gap between programming languages and knowledge representation languages; and
it treats updates on an equal footing with datasets, leading to a sound and practical treat-
ment of action and change.

Bob Kowalski, Professor Emeritus, Imperial College London

In a world where Deep Learning and Python are the talk of the day, this book is a re-
markable development. It introduces the reader to the fundamentals of traditional Logic
Programming and makes clear the benefits of using the technology to create runnable spec-
ifications for complex systems.

Son Cao Tran, Professor in Computer Science, NewMexico State University

Excellent introduction to the fundamentals of Logic Programming. The book is well-
written and well-structured. Concepts are explained clearly and the gradually increasing
complexity of exercises makes it so that one can understand easy notions quickly before mov-
ing on to more difficult ideas.

George Younger, student, Stanford University

Introduction to
Logic Programming

Synthesis Lectures on Artificial
Intelligence andMachine

Learning
Editors
Ronald Brachman, Jacobs Technion-Cornell Institute at Cornell Tech
Francesca Rossi, IBMResearch AI
Peter Stone,University of Texas at Austin

Introduction to Logic Programming
Michael Genesereth and Vinay K. Chaudhri
2020

Federated Learning
Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu
2019

An Introduction to the Planning Domain Definition Language
Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise
2019

Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms,
Second Edition
Rina Dechter
2019

Learning and Decision-Making from Rank Data
Lirong Xia
2019

Lifelong Machine Learning, Second Edition
Zhiyuan Chen and Bing Liu
2018

Adversarial Machine Learning
Yevgeniy Vorobeychik and Murat Kantarcioglu
2018

vi
Strategic Voting
Reshef Meir
2018

Predicting Human Decision-Making: From Prediction to Action
Ariel Rosenfeld and Sarit Kraus
2018

Game Theory for Data Science: Eliciting Truthful Information
Boi Faltings and Goran Radanovic
2017

Multi-Objective Decision Making
Diederik M. Roijers and Shimon Whiteson
2017

Lifelong Machine Learning
Zhiyuan Chen and Bing Liu
2016

Statistical Relational Artificial Intelligence: Logic, Probability, and Computation
Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole
2016

Representing and Reasoning with Qualitative Preferences: Tools and Applications
Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar
2016

Metric Learning
Aurélien Bellet, Amaury Habrard, and Marc Sebban
2015

Graph-Based Semi-Supervised Learning
Amarnag Subramanya and Partha Pratim Talukdar
2014

Robot Learning from Human Teachers
Sonia Chernova and Andrea L. Thomaz
2014

General Game Playing
Michael Genesereth and Michael Thielscher
2014

Judgment Aggregation: A Primer
Davide Grossi and Gabriella Pigozzi
2014

vii
An Introduction to Constraint-Based Temporal Reasoning
Roman Barták, Robert A. Morris, and K. Brent Venable
2014

Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms
Rina Dechter
2013

Introduction to Intelligent Systems in Traffic and Transportation
Ana L.C. Bazzan and Franziska Klügl
2013

A Concise Introduction to Models and Methods for Automated Planning
Hector Geffner and Blai Bonet
2013

Essential Principles for Autonomous Robotics
Henry Hexmoor
2013

Case-Based Reasoning: A Concise Introduction
Beatriz López
2013

Answer Set Solving in Practice
Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
2012

Planning with Markov Decision Processes: An AI Perspective
Mausam and Andrey Kolobov
2012

Active Learning
Burr Settles
2012

Computational Aspects of Cooperative Game Theory
Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge
2011

Representations and Techniques for 3D Object Recognition and Scene Interpretation
Derek Hoiem and Silvio Savarese
2011

A Short Introduction to Preferences: Between Artificial Intelligence and Social Choice
Francesca Rossi, Kristen Brent Venable, and Toby Walsh
2011

viii
Human Computation
Edith Law and Luis von Ahn
2011

Trading Agents
Michael P. Wellman
2011

Visual Object Recognition
Kristen Grauman and Bastian Leibe
2011

Learning with Support Vector Machines
Colin Campbell and Yiming Ying
2011

Algorithms for Reinforcement Learning
Csaba Szepesvári
2010

Data Integration: The Relational Logic Approach
Michael Genesereth
2010

Markov Logic: An Interface Layer for Artificial Intelligence
Pedro Domingos and Daniel Lowd
2009

Introduction to Semi-Supervised Learning
XiaojinZhu and Andrew B.Goldberg
2009

Action Programming Languages
Michael Thielscher
2008

Representation Discovery using Harmonic Analysis
Sridhar Mahadevan
2008

Essentials of Game Theory: A Concise Multidisciplinary Introduction
Kevin Leyton-Brown and Yoav Shoham
2008

ix
A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence
Nikos Vlassis
2007

Intelligent Autonomous Robotics: A Robot Soccer Case Study
Peter Stone
2007

Copyright © 2020 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by anymeans—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Introduction to Logic Programming

Michael Genesereth and Vinay K. Chaudhri

www.morganclaypool.com

ISBN: 9781681737225 paperback
ISBN: 9781681737232 ebook
ISBN: 9781681737249 hardcover

DOI 10.2200/S00966ED1V01Y201911AIM044

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE ANDMACHINE LEARNING

Lecture #44
Series Editors: Ronald Brachman, Jacobs Technion-Cornell Institute at Cornell Tech

Francesca Rossi, IBM Research AI
Peter Stone, University of Texas at Austin

Series ISSN
Synthesis Lectures on Artificial Intelligence and Machine Learning
Print 1939-4608 Electronic 1939-4616

www.morganclaypool.com

Introduction to
Logic Programming

Michael Genesereth and Vinay K. Chaudhri
Stanford University

SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND
MACHINE LEARNING #44

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
Logic Programming is a style of programming in which programs take the form of sets of sen-
tences in the language of Symbolic Logic. Over the years, there has been growing interest in
Logic Programming due to applications in deductive databases, automated worksheets, Enter-
prise Management (business rules), Computational Law, and General Game Playing. This book
introduces Logic Programming theory, current technology, and popular applications.

In this volume, we take an innovative, model-theoretic approach to logic programming.
We begin with the fundamental notion of datasets, i.e., sets of ground atoms. Given this funda-
mental notion, we introduce views, i.e., virtual relations; and we define classical logic programs as
sets of view definitions, written using traditional Prolog-like notation but with semantics given
in terms of datasets rather than implementation. We then introduce actions, i.e., additions and
deletions of ground atoms; and we define dynamic logic programs as sets of action definitions.

In addition to the printed book, there is an online version of the text with an interpreter
and a compiler for the language used in the text and an integrated development environment
for use in developing and deploying practical logic programs.

KEYWORDS
logic programming, computational logic, knowledge representation, deductive
databases, aritificial intelligence

xiii

Contents
Preface . xix

PART I Introduction . 1
1 Introduction . 3

1.1 Programming in Logic . 3
1.2 Logic Programs as Runnable Specifications . 3
1.3 Advantages of Logic Programming . 4
1.4 Applications of Logic Programming . 5
1.5 Basic Logic Programming . 6

2 Datasets . 9
2.1 Introduction . 9
2.2 Conceptualization . 9
2.3 Datasets . 10
2.4 Example – Sorority World . 12
2.5 Example – Kinship . 13
2.6 Example – Blocks World . 14
2.7 Example – Food World . 16
2.8 Reformulation . 16
2.9 Exercises . 18

PART II Queries and Updates . 21
3 Queries . 23

3.1 Introduction . 23
3.2 Query Syntax . 23
3.3 Query Semantics . 25

xiv
3.4 Safety . 26
3.5 Predefined Concepts . 27
3.6 Example – Kinship . 28
3.7 Example – Map Coloring . 28
3.8 Exercises . 30

4 Updates . 33

4.1 Introduction . 33
4.2 Update Syntax . 33
4.3 Update Semantics . 34
4.4 Simultaneous Updates . 35
4.5 Example – Kinship . 36
4.6 Example – Colors . 37
4.7 Exercises . 40

5 Query Evaluation . 41

5.1 Introduction . 41
5.2 Evaluating Ground Queries . 41
5.3 Matching . 42
5.4 Evaluating Queries With Variables . 45
5.5 Computational Analysis . 46
5.6 Exercises . 47

6 ViewOptimization . 49

6.1 Introduction . 49
6.2 Subgoal Ordering . 49
6.3 Subgoal Removal . 51
6.4 Rule Removal . 52
6.5 Example – Cryptarithmetic . 52
6.6 Exercises . 54

xv

PART III ViewDefinitions . 57

7 ViewDefinitions . 59

7.1 Introduction . 59
7.2 Syntax . 60
7.3 Semantics . 61
7.4 Semipositive Programs . 64
7.5 Stratified Programs . 66
7.6 Exercises . 69

8 View Evaluation . 71

8.1 Introduction . 71
8.2 Top-Down Processing of Ground Goals and Rules . 71
8.3 Unification . 73
8.4 Top-Down Processing of Non-Ground Queries and Rules 76
8.5 Exercises . 78

9 Examples . 81

9.1 Introduction . 81
9.2 Example – Kinship . 81
9.3 Example – Blocks World . 82
9.4 Example – Modular Arithmetic . 84
9.5 Example – Directed Graphs . 85
9.6 Exercises . 86

10 Lists, Sets, Trees . 89

10.1 Introduction . 89
10.2 Example – Peano Arithmetic . 89
10.3 Lists . 91
10.4 Example – Sorted Lists . 92
10.5 Example – Sets . 93
10.6 Example – Trees . 94
10.7 Exercises . 94

xvi

11 Dynamic Systems . 97
11.1 Introduction . 97
11.2 Representation . 98
11.3 Simulation . 99
11.4 Planning . 101
11.5 Exercises . 102

12 Metaknowledge . 103
12.1 Introduction . 103
12.2 Natural Language Processing . 103
12.3 Boolean Logic . 105
12.4 Exercises . 106

PART IV OperationDefinitions 109
13 Operations . 111

13.1 Introduction . 111
13.2 Syntax . 111
13.3 Semantics . 113
13.4 Exercises . 115

14 Dynamic Logic Programs . 119
14.1 Introduction . 119
14.2 Reactive Systems . 119
14.3 Closed Systems . 120
14.4 Mixed Initiative . 121
14.5 Simultaneous Actions . 122
14.6 Exercises . 124

15 DatabaseManagement . 125
15.1 Introduction . 125
15.2 Update With Constraints . 125
15.3 Maintaining Materialized Views . 126
15.4 Update Through Views . 127
15.5 Exercises . 128

xvii

16 InteractiveWorksheets . 129
16.1 Interactive Worksheets . 129
16.2 Example . 130
16.3 Page Data . 130
16.4 Gestures . 132
16.5 Operation Definitions . 132
16.6 View Definitions . 134
16.7 Semantic Modeling . 135

PARTV Conclusion . 139

17 Variations . 141
17.1 Introduction . 141
17.2 Logic Production Systems . 141
17.3 Constraint Logic Programming . 142
17.4 Disjunctive Logic Programming . 143
17.5 Existential Logic Programming . 144
17.6 Answer Set Programming . 145
17.7 Inductive Logic Programming . 146

A Predefined Concepts in EpilogJS . 149
A.1 Introduction . 149
A.2 Relations . 149
A.3 Math Functions . 150
A.4 String Functions . 153
A.5 List Functions . 153
A.6 Arithmetic List Functions . 154
A.7 Conversion Functions . 155
A.8 Aggregates . 155
A.9 Operators . 156

B Sierra . 159
B.1 Introduction . 159
B.2 Getting Started . 159

xviii
B.3 Data . 160
B.4 Queries . 168
B.5 Updates . 174
B.6 View Definitions . 179
B.7 Operation Definitions . 185
B.8 Settings . 189
B.9 File Management . 192
B.10 Conclusion . 192

References . 195

Authors’ Biographies . 199

xix

Preface
This book is an introductory textbook on Logic Programming. It is intended primarily for use at
the undergraduate level. However, it can be used for motivated secondary school students, and
it can be used at the start of graduate school for those who have not yet seen the material.

There are just two prerequisites. The book presumes that the student understands sets
and set operations, such as union, intersection, and so forth. The book also presumes that the
student is comfortable with symbolic mathematics, at the level of high-school algebra or beyond.
Nothing else is required.

While experience in computational thinking is helpful, it is not essential. And prior pro-
gramming experience is not necessary. In fact, we have observed that some students with pro-
gramming backgrounds have more difficulty at first than students who are not accomplished
programmers! It is almost as if they need to unlearn some things in order to appreciate the
power and beauty of Logic Programming.

The approach to Logic Programming taken here emerged from more than 30 years of
research, applications, and teaching of this material in both academic and commercial settings.
The result of this experience is an approach to the subject matter that differs somewhat from the
approach taken in other books on the subject in two essential ways.

First of all, in this volume, we take a model-theoretic approach to specifying semantics
rather than the traditional proof-theoretic approach. We begin with the fundamental notion of
datasets, i.e., sets of ground atoms. Given this fundamental notion, we introduce classic logic
programs as view definitions, written using traditional Prolog notation but with semantics given
in terms of datasets rather than implementation. (We also talk about implementation, but it
comes later in the presentation.)

Another difference from other books on Logic Programming is that we treat change on
an equal footing with state. Having talked about datasets, we introduce the fundamental notion
of updates, i.e., additions and deletions of ground atoms. Given this fundamental notion, we
introduce dynamic logic programs as sets of action definitions, where actions are conceptualized
as sets of simultaneous updates. This extension allows us to talk about logical agents as well as
static logic programs. (A logical agent is effectively a state machine in which each state is modeled
as a dataset and each arc is modeled as a set of updates.)

In addition to the text of the book in print and online, there is a website with automatically
graded online exercises, programming assignments, Logic Programming tools, and a variety of
sample applications. The website (http://logicprogramming.stanford.edu) is free to use
and open to all.

http://logicprogramming.stanford.edu

xx PREFACE
In conclusion, we first of all want to acknowledge the influence of two individuals who

had a profound effect on our work here - Jeff Ullman and Bob Kowalski. Jeff Ullman, our col-
league at Stanford, inspired us with his popular textbooks and helped us to appreciate the deep
relationship between Logic Programming and databases. Bob Kowalski, co-inventor of Logic
Programming, listened to our ideas, nurtured our work, and even collaborated on some of the
material presented here.

We also want to acknowledge the contributions of a former graduate student - Abhijeet
Mohapatra. He is a co-inventor of dynamic logic programming and the co-creator of many
of the programming tools associated with our approach to Logic Programming. He helped to
teach the course, worked with students, and offered invaluable suggestions on the presentation
and organization of the material.

Finally, our thanks to the students who have had to endure early versions of this material,
in many cases helping to get it right by suffering through experiments that were not always
successful. It is a testament to the intelligence of these students that they seem to have learned
the material despite multiple mistakes on our part. Their patience and constructive comments
were invaluable in helping us to understand what works and what does not.

Michael Genesereth and Vinay K. Chaudhri
December 2019

PART I

Introduction

3

C H A P T E R 1

Introduction
1.1 PROGRAMMING INLOGIC

Logic Programming is a style of programming in which programs take the form of sets of sen-
tences in the language of Symbolic Logic. Programs written in this style are called logic programs.
The language in which these programs are written is called logic programming language. And a
computer system that manages the creation and execution of logic programs is called a logic
programming system.

1.2 LOGICPROGRAMSASRUNNABLE SPECIFICATIONS

Logic Programming is often said to be declarative or descriptive and contrasts with the imperative
or prescriptive approach to programming associated with traditional programming languages.

In imperative/prescriptive programming, the programmer provides a detailed operational
program for a system in terms of internal processing details (such as data types and variable
assignments). In writing such programs, programmers typically take into account information
about the intended application areas and goals of their programs, but that information is rarely
recorded in the resulting programs, except in the form of non-executable comments.

In declarative/descriptive programming, programmers explicitly encode information
about the application area and the goals of the program, but they do not specify internal pro-
cessing details, leaving it to the systems that execute those programs to decide on those details
on their own.

As an intuitive example of this distinction, consider the task of programming a robot to
navigate from one point in a building to a second point. A typical imperative program would
direct the robot to move forward a certain amount (or until its sensors indicated a suitable land-
mark); it would then tell the robot to turn and move forward again; and so forth until the robot
arrives at the destination. By contrast, a typical declarative program would consist of a map and
an indication of the starting and ending points on the map and would leave it to the robot to
decide how to proceed.

A logic program is a type of declarative program in that it describes the application area
of the program and the goals the programmer would like to achieve. It focusses on what is true
andwhat is wanted rather than how to achieve the desired goals. In this respect, a logic program
is more of a specification than an implementation.

4 1. INTRODUCTION
Logic Programming is practical because there are well-known mechanical techniques for

executing logic programs and/or producing traditional programs that achieve the same results.
For this reason, logic programs are sometimes called runnable specifications.

1.3 ADVANTAGESOFLOGIC PROGRAMMING
Logic programs are typically easier to create and easier to modify than traditional programs. Pro-
grammers can get by with little or no knowledge of the capabilities and limitations of the systems
executing those programs, and they do not need to choose specific methods of achieving their
programs’ goals.

Logic programs are more composable than traditional programs. In writing logic programs,
programmers do not need tomake arbitrary choices. As a result, logic programs can be combined
with each other more easily than traditional programs where unnecessary arbitrary choices can
conflict.

Logic programs are also more agile than traditional programs. A system executing a logic
program can readily adapt to unexpected changes to its assumptions and/or its goals. Once again
consider the robot described in the preceding section. If a robot running a logic program learns
that a corridor is unexpectedly closed, it can choose a different corridor. If the robot is asked to
pick up and deliver some goods along the way, it can combine routes to accomplish both tasks
without having to accomplish them individually.

Finally, logic programs are more versatile than traditional programs—they can be used for
multiple purposes, often without modification. Suppose we have a table of parents and children.
Now, imagine that we are given definitions for standard kinship relations. For example, we are
told that a grandparent is the parent of a parent. That single definition can be used as the basis
for multiple traditional programs. (1) We can use it to build a program that computes whether
one person is the grandparent of a second person. (2) We can use the definition to write a
program to compute a person’s grandparents. (3) We can use it to compute the grandchildren
of a given person. (4) And we can use it to compute a table of grandparents and grandchildren.
In traditional programming, we would write different programs for each of these tasks, and the
definition of grandparent would not be explicitly encoded in any of these programs. In Logic
Programming, the definition can be written just once, and that single definition can be used to
accomplish all four tasks.

As another example of this (due to John McCarthy), consider the fact that, if two objects
collide, they typically make a noise. This fact about the world can be used in designing programs
for various purposes. (1) If we want to wake someone else, we can bang two objects together.
(2) If we want to avoid waking someone, we would be careful not to let things collide. (3) If
we see two cars come close in the distance and we hear a bang, we can conclude that they had
collided. (4) If we see two cars come close together but we do not hear anything, we might guess
that they did not collide.

1.4. APPLICATIONSOFLOGIC PROGRAMMING 5

1.4 APPLICATIONSOFLOGIC PROGRAMMING
Logic Programming can be used fruitfully in almost any application area. However, it has spe-
cial value in application areas characterized by large numbers of definitions and constraints and
rules of action, especially where those definitions and constraints and rules come from multiple
sources or where they are frequently changing. The following are a few application areas where
Logic Programming has proven particularly useful.

DatabaseSystems. By conceptualizing database tables as sets of simple sentences, it is possible
to use Logic in support of database systems. For example, the language of Logic can be used to
define virtual views of data in terms of explicitly stored tables; it can be used to encode constraints
on databases; it can be used to specify access control policies; and it can be used to write update
rules.

LogicalSpreadsheets/Worksheets. Logical spreadsheets (sometimes called worksheets) gen-
eralize traditional spreadsheets to include logical constraints as well as traditional arithmetic for-
mulas. Examples of such constraints abound. For example, in scheduling applications, we might
have timing constraints or restrictions on who can reserve which rooms. In the domain of travel
reservations, we might have constraints on adults and infants. In academic program sheets, we
might have constraints on how many courses of varying types that students must take.

Data Integration. The language of Logic can be used to relate the concepts in different vocab-
ularies and thereby allow users to access multiple, heterogeneous data sources in an integrated
fashion, giving each user the illusion of a single database encoded in his own vocabulary.

Enterprise Management. Logic Programming has special value in expressing and imple-
menting business rules of various sorts. Internal business rules include enterprise policies (e.g.,
expense approval) and workflow (who does what and when). External business rules include the
details of contracts with other enterprises, configuration and pricing rules for company products,
and so forth.

Computational Law. Computational Law is the branch of Legal Informatics concerned with
the representation of rule and regulations in computable form. Encoding laws in computable
form enables automated legal analysis and the creation of technology to make that analysis
available to citizens, and monitors and enforcers, and legal professionals.

GeneralGamePlaying. General game players are systems able to accept descriptions of arbi-
trary games at runtime and able to use such descriptions to play those games effectively without
human intervention. In other words, they do not know the rules until the games start. Logic
Programming is widely used in General Game Playing as the preferred way to formalize game
descriptions.

6 1. INTRODUCTION

1.5 BASIC LOGIC PROGRAMMING

Over the years, various types of Logic Programming have been explored (Basic Logic Pro-
gramming, Classic Logic Programming, Transaction Logic Programming, Constraint Logic
Programming, Disjunctive Logic Programming, Answer Set Programming, Inductive Logic
Programming, etc.). Along with these different types of Logic Programming, a variety of logic
programming languages have been developed (e.g., Datalog, Prolog, Epilog, Golog, Progol,
LPS, etc.). In this volume, we concentrate on Basic Logic Programming, a variant of Transac-
tion Logic Programming; and we use Epilog in writing our examples.

In Basic Logic Programming, we model the states of an application as sets of simple facts
(called datasets), and we write rules to define abstract views of the facts in datasets. We model
changes to state as primitive updates to our datasets, i.e., sets of additions and deletions of facts,
and we write rules of a different sort to define compound actions in terms of primitive updates.

Epilog (the language we use in this volume) is closely related to Datalog and Prolog.
Their syntaxes are almost identical. And the three languages are nicely ordered in terms of
expressiveness—with Datalog being a subset of Prolog and Prolog being a subset of Epilog.
For the sake of simplicity, we use the syntax of Epilog throughout this course, and we talk about
the Epilog interpreter and compiler. Thus, when we mention Datalog in what follows, we are
referring to the Datalog subset of Epilog; and, when we mention Prolog, we are referring to the
Prolog subset of Epilog.

As we shall see, all three of these languages (Datalog and Prolog and Epilog) are less ex-
pressive than the languages associated with more complex forms of Logic Programming (such
as Disjunctive Logic Programming and Answer Set Programming). While these restrictions
limit what we can say in these languages, the resulting programs are computationally better be-
haved and, in most cases, more practical than programs written in more expressive languages.
Moreover, due to these restrictions, Datalog and Prolog and Epilog are easy to understand; and,
consequently, they have pedagogical value as an introduction to more complex Logic Program-
ming languages.

In keeping with our emphasis on Basic Logic Programming, the material of the course is
divided into five units. In this unit, Unit 1, we give an overview of Logic Programming and Basic
Logic Programming, and we introduce datasets. In Unit 2, we talk about queries and updates. In
Unit 3, we talk about view definitions. In Unit 4, we concentrate on operation definitions. And,
in Unit 5, we talk about variations, i.e., other forms of Logic Programming.

HISTORICALNOTES

In the mid-1950s, computer scientists began to concentrate on the development of high-level
programming languages. As a contribution to this effort, JohnMcCarthy suggested the language
of Symbolic Logic as a candidate, and he articulated the ideal of declarative programming. He

1.5. BASIC LOGIC PROGRAMMING 7
gave voice to these ideas in a seminal paper, published in 1958, which describes a type of system
that he called an advice taker.

“The main advantage we expect the advice taker to have is that its behavior will be
improvable merely by making statements to it, telling it about its ... environment and
what is wanted from it. Tomake these statements will require little, if any, knowledge
of the program or the previous knowledge of the advice taker.”

The idea of declarative programming caught the imaginations of subsequent researchers—
notably Bob Kowalski, one of the fathers of Logic Programming, and Ed Feigenbaum, the
inventor of Knowledge Engineering. In a paper written in 1974, Feigenbaum gave a forceful
restatement of McCarthy’s ideal.

“The potential use of computers by people to accomplish tasks can be ‘one-
dimensionalized’ into a spectrum representing the nature of the instruction that must
be given the computer to do its job. Call it the what-to-how spectrum. At one ex-
treme of the spectrum, the user supplies his intelligence to instruct the machine with
precision exactly how to do his job step-by-step. ... At the other end of the spectrum
is the user with his real problem. ... He aspires to communicate what he wants done ...
without having to lay out in detail all necessary subgoals for adequate performance.”

The development of Logic Programming in its present form can be traced to subsequent
debates about declarative vs. procedural representations of knowledge in the Artificial Intelli-
gence community.

Advocates of procedural representations were mainly centered at MIT, under the lead-
ership of Marvin Minsky and Seymour Papert. Although it was based on the proof methods
of logic, Planner, developed at MIT, was the first language to emerge within the procedural-
ist paradigm. Planner featured pattern-directed invocation of procedural plans from goals (i.e.,
goal-reduction or backward chaining) and from assertions (i.e., forward chaining). The most
influential implementation of Planner was the subset of Planner, called Micro-Planner, imple-
mented by Gerry Sussman, Eugene Charniak and Terry Winograd. It was used to implement
Winograd’s natural-language understanding program SHRDLU, which was a landmark at that
time.

Advocates of declarative representations were centered at Stanford (associated with John
McCarthy, Bertram Raphael, and Cordell Green) and in Edinburgh (associated with John Alan
Robinson, Pat Hayes, and Robert Kowalski). Hayes and Kowalski tried to reconcile the logic-
based declarative approach to knowledge representation with Planner’s procedural approach.
In 1973, Hayes developed an equational language, Golux, in which different procedures could
be obtained by altering the behavior of a theorem prover. Kowalski, on the other hand, de-
veloped SLD resolution, a variant of SL-resolution, and showed how it treats implications as
goal-reduction procedures. Kowalski collaborated with Colmerauer in Marseille, who developed
these ideas in the design of the programming language Prolog, which was implemented in the

8 1. INTRODUCTION
summer and autumn of 1972. The first Prolog program, also written in 1972 and implemented
in Marseille, was a French question-answering system. The use of Prolog as a practical program-
ming language was given great momentum by the development of a compiler by David Warren
in Edinburgh in 1977.

9

C H A P T E R 2

Datasets
2.1 INTRODUCTION

Datasets are collections of facts about some aspect of the world. Datasets can be used by them-
selves to encode information. They can also be used in combination with logic programs to form
more complex information systems, as we shall see in the coming chapters.

We begin this chapter by talking about conceptualizing the world. We then introduce a
formal language for encoding information about our conceptualization in the form of datasets.
We provide some examples of datasets encoded within this language. And, finally, we discuss
the issues involved in reconceptualizing an application area and encoding those different con-
ceptualizations as datasets with different vocabularies.

2.2 CONCEPTUALIZATION

When we think about the world, we usually think in terms of objects and relationships among
these objects. Objects include things like people and offices and buildings. Relationships include
things like parenthood, friendship, office assignments, office locations, and so forth.

One way to represent such information is in the form of graphs. As an example, consider
the graph shown below. The nodes here represent objects, and the arcs represent relationships
among these objects.

art

bob

cal cam coe cory

bud

Alternatively, we can represent such information in the form of tables. For example, we
can encode the information in the preceding graph as a table like the one shown below.

10 2. DATASETS

parent

art bob

art bea

bob cal

bob cam

bea coe

bea cory

Another possibility is to encode individual relationships as sentences in a formal language.
For example, we can represent our kinship information as shown below. Here, each fact takes
the form of a sentence consisting of name for the relationship and the names of the entities
involved.

parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,coe)
parent(bea,cory)

While graphs and tables are intuitively appealing, a sentential representation ismore useful
for our purposes. So, in what follows we represent facts as sentences, and we represent different
states of the world as different sets of such sentences.

A final note before we leave this discussion of conceptualization. In what follows, we use
the words relation and relationship interchangeably. From a mathematical point of view, this is
not exactly correct, as there is a subtle difference between the two notions. However, for our
purposes, the difference is unimportant, and it is often easier to say relation than relationship.

2.3 DATASETS
A dataset is a collection of simple facts that characterize the state of an application area. Facts
in a dataset are assumed to be true; facts that are not included in the dataset are assumed to be
false. Different datasets characterize different states.

Constants are strings of lower case letters, digits, underscores, and periods or strings of ar-
bitrary ASCII characters enclosed by double quotes. For reasons described in the next chapter,
we prohibit strings containing uppercase letters except within double quotes. Examples of con-
stants include a, b, comp225, 123, 3.14159, barack_obama, and "Mind your p's and q's!".
Non-examples include Art, p&q, the-house-that-jack-built. The first contains an upper

2.3. DATASETS 11
case letter; the second contains an ampersand; and the third contains hyphens. A vocabulary is
a collection of constants.

In what follows, we distinguish three types of constants. Symbols are intended to represent
objects in the world. Constructors are used to create compound names for objects. Predicates
represent relationships on objects.

Each constructor and predicate has an associated arity, i.e., the number of arguments
allowed in any expression involving the constructor or predicate. Unary constructors and predi-
cates are those that take one argument; binary constructors and predicates take two arguments;
and ternary constructors and predicates take three arguments. Beyond that, we often say that
constructors and predicates are n-ary. Note that it is possible to have a predicate with no argu-
ments, representing a condition that is simply true or false.

A ground term is either a symbol or a compound name. A compound name is an expression
formed from an n-ary constructor and n ground terms enclosed in parentheses and separated by
commas. If a and b are symbols and pair is a binary constructor, then pair(a,a), pair(a,b),
pair(b,a), and pair(b,b) are compound names. The adjective ground here means that the
term does not contain any variables (which we discuss in the next chapter).

The Herbrand universe for a vocabulary is the set of all ground terms that can be formed
from the symbols and constructors in the vocabulary. For a finite vocabulary without construc-
tors, the Herbrand universe is finite (i.e., just the symbols). For a finite vocabulary with con-
structors, the Herbrand universe is infinite (i.e., the symbols and all compound names that can
be formed from those symbols). The Herbrand universe for the vocabulary described in the
previous paragraph is shown below.

{pair(a,b), pair(a,pair(b,c)), pair(a,pair(b,pair(c,d))), ...}

A datum/factoid/fact is an expression formed from an n-ary predicate and n ground terms
enclosed in parentheses and separated by commas. For example, if r is a binary predicate and a
and b are symbols, then r(a,b) is a datum.

The Herbrand base for a vocabulary is the set of all factoids that can be formed from the
constants in the vocabulary. For example, for a vocabulary with just two symbols a and b and
the single binary predicate r, the Herbrand base for this language is shown below.

{r(a,a), r(a,b), r(b,a), r(b,b)}

Finally, we define a dataset to be any subset of the Herbrand base, i.e., an arbitrary set of
facts that can be formed from the vocabulary of a database. Intuitively, we can think of the data
in a dataset as the facts that we believe to be true; data that are not in the dataset are assumed
to be false.

12 2. DATASETS

2.4 EXAMPLE – SORORITYWORLD
Consider the interpersonal relations of a small sorority. There are just four members—Abby,
Bess, Cody, and Dana. Some of the girls like each other, but some do not.

Figure 2.1 shows one set of possibilities. The checkmark in the first row here means that
Abby likes Cody, while the absence of a checkmark means that Abby does not like the other
girls (including herself). Bess likes Cody too. Cody likes everyone but herself. And Dana also
likes the popular Cody.

Abby Bess Cody Dana

Abby P

Bess P

Cody P P P

Dana P

Figure 2.1: One state of Sorority World.

In order to encode this information as a dataset, we adopt a vocabulary with four sym-
bols (abby, bess, cody, dana) and one binary predicate (likes). Using this vocabulary, we can
encode the information in Figure 2.1 by writing the dataset shown below.

likes(abby,cody)
likes(bess,cody)
likes(cody,abby)
likes(cody,bess)
likes(cody,dana)
likes(dana,cody)

Note that the likes relation has no inherent restrictions. It is possible for one person to
like a second without the second person liking the first. It is possible for a person to like just
one other person or many people or nobody. It is possible that everyone likes everyone or no one
likes anyone.

Even for a small world like this one, there are quite a few possible ways the world could be.
Given four girls, there are sixteen possible instances of the likes relation—likes(abby,abby),
likes(abby,bess), likes(abby,cody), likes(abby,dana), likes(bess,abby), and so
forth. Each of these sixteen can be either true or false. There are 216 (i.e., 65,536) possible
combinations of these true-false possibilities; and so there are 216 possible states of this world
and, therefore, 216 possible datasets.

2.5. EXAMPLE –KINSHIP 13

2.5 EXAMPLE –KINSHIP
As another example, consider a small dataset about kinship. The terms in this case once again
represent people. The predicates name properties of these people and their relationships with
each other.

In our example, we use the binary predicate parent to specify that one person is a parent of
another. The sentences below constitute a dataset describing six instances of the parent relation.
The person named art is a parent of the person named bob and the person named bea; bob is
the parent of cal and cam; and bea is the parent of coe and cory.

parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,coe)
parent(bea,cory)

The adult relation is a unary relation, i.e., a simple property of a person, not a relationship
with other people. In the dataset below, everyone is an adult except for Art’s grandchildren.

adult(art)
adult(bob)
adult(bea)

We can express gender with two unary predicates male and female. The following data
expresses the genders of all of the people in our dataset. Note that, in principle, we need only
one relation here, since one gender is the complement of the other. However, representing both
allows us to enumerate instances of both gender equally efficiently, which can be useful in certain
applications.

male(art) female(bea)
male(bob) female(coe)
male(cal) female(cory)
male(cam)

As an example of a ternary relation, consider the data shown below. Here, we use prefers
to represent the fact that the first person likes the second person more than the third person.
For example, the first sentence says that Art prefers bea to bob; the second sentence says that
bob prefers cal to cam.

14 2. DATASETS
prefers(art,bea,bob)
prefers(bob,cal,cam)

Note that the order of arguments in such sentences is arbitrary. Given the meaning of the
prefers relation in our example, the first argument denotes the subject, the second argument
is the person who is preferred, and the third argument denotes the person who is less preferred.
We could equally well have interpreted the arguments in other orders. The important thing
is consistency—once we choose to interpret the arguments in one way, we must stick to that
interpretation everywhere.

One noteworthy difference difference between Sorority World and Kinship is that there
is just one relation in the former (i.e., the likes relation), whereas there are multiple relations
in the latter (three unary predicates, one binary predicate, and one ternary predicate).

A more subtle and interesting difference is that the relations in Kinship are constrained in
various ways while the likes relation in Sorority World is not. It is possible for any person in
Sorority World to like any other person; all combinations of likes and dislikes are possible. By
contrast, in Kinship there are constraints that limit the number of possible states. For example,
it is not possible for a person to be his own parent, and it is not possible for a person to be both
male and female.

2.6 EXAMPLE – BLOCKSWORLD
The Blocks World is a popular application area for illustrating ideas in the field of Artificial
Intelligence. A typical Blocks World scene is shown in Figure 2.2.

A

B

C

D

E

Figure 2.2: One state of Blocks World.

Most people looking at Figure 2.2 interpret it as a configuration of five toy blocks. Some
people conceptualize the table on which the blocks are resting as an object as well; but, for
simplicity, we ignore it here.

In order to describe this scene, we adopt a vocabulary with five symbols (a, b, c, d, e), with
one symbol for each of the five blocks in the scene. The intent here is for each of these symbols
to represent the block marked with the corresponding capital letter in the scene.

In a spatial conceptualization of the Blocks World, there are numerous meaningful rela-
tions. For example, it makes sense to talk about the relation that holds between two blocks if
and only if one is resting on the other. In what follows, we use the predicate on to refer to this

2.6. EXAMPLE – BLOCKSWORLD 15
relation. We might also talk about the relation that holds between two blocks if and only if one
is anywhere above the other, i.e., the first is resting on the second or is resting on a block that is
resting on the second, and so forth. In what follows, we use the predicate above to talk about
this relation. There is the relation that holds of three blocks that are stacked one on top of the
other. We use the predicate stack as a name for this relation. We use the predicate clear to
denote the relation that holds of a block if and only if there is no block on top of it. We use the
predicate table to denote the relation that holds of a block if and only if that block is resting
on the table.

The arities of these predicates are determined by their intended use. Since on is intended
to denote a relation between two blocks, it has arity 2. Similarly, above has arity 2. The stack
predicate has arity 3. Predicates clear and table each have arity 1.

Given this vocabulary, we can describe the scene in Figure 2.2 by writing sentences that
state which relations hold of which objects or groups of objects. Let’s start with on.The following
sentences tell us directly for each ground relational sentence whether it is true or false.

on(a,b)
on(b,c)
on(d,e)

There are four above facts. The above relation holds of the same pairs of blocks as the on
relation, but it includes one additional fact for block a and block c.

above(a,b)
above(b,c)
above(a,c)
above(d,e)

In similar fashion, we can encode the stack relation and the above relation. There is just
one stack here—block a on block b and block b on block c.

stack(a,b,c)

Finally, we can write out the facts for clear and table. Blocks a and d are clear, while
blocks c and e are on the table.

clear(a) table(c)
clear(d) table(e)

As with Kinship, the relations in Blocks World are constrained in various ways. For ex-
ample, it is not possible for a block to be on itself. Moreover, some of these relations are entirely

16 2. DATASETS
determined by others. For example, given the on relation, the facts about all of the other rela-
tions are entirely determined. In a later chapter, we see how to write out definitions for such
concepts and thereby avoid having to write out individual facts for such defined concepts.

2.7 EXAMPLE – FOODWORLD
As another example of these concepts, consider a small dataset about food and menus. The goal
here is to create a dataset that lists meals that are available at a restaurant on different days of
the week.

The symbols in this case come in two types - days of the week (monday, ... , friday)
and different types of food (calamari, vichyssoise, beef, and so forth). There are three
constructors—a 3-ary constructor for three course meals (three), a 4-ary constructor for four
course meals (four), and a 5-ary constructor for five course meals (five). There is a single binary
predicate menu that relates days of the week and available meals.

The following is an example of a dataset using this vocabulary. On Monday, the restaurant
offers a three course meal with calamari and beef and shortcake, and it offers a different three
course meal with puree and beef and ice cream for dessert. On Tuesday, the restaurant offers one
of the same three-course meals and a four-course meal as well. On Wednesday, the restaurant
offers just one meal—the four-course meal from the day before. On Thursday, the restaurant
offers a five-course meal; and, on Friday, it offers a different five-course meal.

menu(monday,three(calamari,beef,shortcake))
menu(monday,three(puree,beef,icecream))
menu(tuesday,three(puree,beef,icecream))
menu(tuesday,four(consomme,greek,lamb,baklava))
menu(wednesday,four(consomme,greek,lamb,baklava))
menu(thursday,five(vichyssoise,caesar,trout,chicken,tiramisu))
menu(friday,five(vichyssoise,green,trout,beef,souffle))

Note that, although there are constructors here, the dataset is finite in size. In fact, there
are strong restrictions on what sentences make sense. For example, only symbols representing
days of the week appear as the first argument of the menu relation. Only symbols representing
foods appear as arguments in compound names. And only whole meals appear as the second
argument of the menu relation. Note also that compound names are not nested here. These
kinds of restrictions are common in datasets. Later in the book, we show how we can formalize
these constraints.

2.8 REFORMULATION
No matter how we choose to conceptualize the world, it is important to realize that there are
other conceptualizations as well. Furthermore, there need not be any correspondence between

2.8. REFORMULATION 17
the objects, functions, and relations in one conceptualization and the objects, functions, and
relations in another.

In some cases, changing one’s conceptualization of the world can make it impossible to
express certain kinds of knowledge. A famous example of this is the controversy in the field
of physics between the view of light as a wave phenomenon and the view of light in terms of
particles. Each conceptualization allowed physicists to explain different aspects of the behavior
of light, but neither alone sufficed. Not until the two views were merged in modern quantum
physics were the discrepancies resolved.

In other cases, changing one’s conceptualization can make it more difficult to express
knowledge, without necessarily making it impossible. A good example of this, once again in the
field of physics, is changing one’s frame of reference. Given Aristotle’s geocentric view of the
universe, astronomers had great difficulty explaining the motions of the moon and other planets.
The data were explained (with epicycles, etc.) in the Aristotelian conceptualization, although the
explanation was extremely cumbersome. The switch to a heliocentric view quickly led to a more
perspicuous theory.

This raises the question of what makes one conceptualization more appropriate than an-
other. Currently, there is no comprehensive answer to this question. However, there are a few
issues that are especially noteworthy.

One such issue is the grain size of the objects associatedwith aconceptualization. Choosing
too small a grain can make knowledge formalization prohibitively tedious. Choosing too large
a grain can make it impossible.

As an example of the former problem, consider a conceptualization of the scene in Blocks
World in which the objects in the universe of discourse are the atoms composing the blocks in
the picture. Each block is composed of enormously many atoms, so the universe of discourse is
extremely large. Although it is, in principle, possible to describe the scene at this level of detail,
it is senseless if we are interested in only the vertical relationship of the blocks made up of those
atoms. Of course, for a chemist interested in the composition of blocks, the atomic view of the
scene might be more appropriate, and our conceptualization in terms of blocks has too large a
grain.

Indistinguishability abstraction is a form of object reformulation that deals with grain size.
If several objects mentioned in a dataset satisfy all of the same conditions, under appropriate
circumstances, it is possible to abstract the objects to a single object that does not distinguish
the identities of the individuals. This can decrease the cost of processing queries by avoiding
redundant computation in which the only difference is the identities of these objects.

Another way of reconceptualizing the world is the reification of relations as objects in
the universe of discourse. The advantage of this is that it allows us to consider properties of
properties.

18 2. DATASETS
As an example, consider a Blocks World conceptualization in which there are five blocks,

no constructors, and three unary predicates, each corresponding to a different color. This con-
ceptualization allows us to consider the colors of blocks but not the properties of those colors.

We can remedy this deficiency by reifying various color relations as objects in their own
right and by adding a relation to associate blocks with colors. Because the colors are objects in
the universe of discourse, we can then add relations that characterize them, e.g., warm, cool,
and so forth.

There is also the reverse of reification, viz. relationalization. Combining relationalization
and reification is a common way to change from one conceptualization to another.

Note that, in this discussion, no attention has been paid to the question of whether the ob-
jects in one’s conceptualization of the world really exist. We have adopted neither the standpoint
of realism, which posits that the objects in one’s conceptualization really exist, nor that of nomi-
nalism, which holds that one’s concepts have no necessary external existence. Conceptualizations
are our inventions, and their justification is based solely on their utility. This lack of commitment
indicates the essential ontological promiscuity of Logic Programming: any conceptualization of
the world is accommodated, and we seek those that are useful for our purposes.

2.9 EXERCISES
2.1. Consider the Sorority World introduced above. Write out a dataset describing a state

in which every girl likes herself and no one else.

2.2. Consider a variation of the Sorority World example in which we have a single binary
relation, called friend. friend differs from likes in two ways. It is non-reflexive, i.e.,
a girl cannot be friends with herself; and it is symmetric, i.e., if one girl is a friend of a
second girl, then the second girl is friends with the first. Write out a dataset describing
a state that satisfies the non-reflexivity and symmetry of the friend relation and so that
exactly six friend facts are true. Note that there are multiple ways in which this can be
done.

2.3. Consider a variation of the Sorority World example in which we have a single binary
relation, called younger. younger differs from likes in three ways. It is non-reflexive,
i.e., a girl cannot be younger than herself. It is antisymmetric, i.e., if one girl is younger
than a second, then the second is not younger than the first. It is transitive, i.e., if one
girl is younger than a second and the second is younger than a third, then the first is
younger than the third. Write out a dataset describing a state that satisfies the reflexivity,
antisymmetry, and transitivity of the younger relation and so that the maximum number
of younger facts are true. Note that there are multiple ways in which this can be done.

2.4. A person x is a sibling of a person y if and only if x is a brother or a sister of y. Write
out the sibling facts corresponding to the parent facts shown below.

2.9. EXERCISES 19
parent (art,bob)
parent (art,bob)
parent (art,bob)
parent (art,bob)
parent (art,bob)
parent (art,bob)

2.5. Consider the state of the Blocks World pictured below. Write out all of the above facts
that are true in this state.

A

B

C

D E

2.6. Consider a world with n symbols and a single binary predicate. How many distinct facts
can be written in this language?

n, 2n, n2, 2n, nn, 2n2 , 22n

2.7. Consider a world with n symbols and a single binary predicate. How many distinct
datasets are possible for this language?

n, 2n, n2, 2n, nn, 2n2 , 22n

2.8. Consider a world with n symbols and a single binary predicate; and suppose that the
binary relation is functional, i.e., every symbol in the first position is paired with exactly
one symbol in the second position. How many distinct datasets satisfy this restriction?

n, 2n, n2, nn, 2n, 2n2 , 22n

PART II

Queries and Updates

23

C H A P T E R 3

Queries
3.1 INTRODUCTION

In Chapter 2, we saw how to represent the state of an application area as a dataset. If a dataset
is large, it can be difficult to answer questions based on that dataset. In this chapter, we look at
various ways of querying a dataset to find just the information that we need.

The simplest form of query is a true-or-false question. Given a factoid and a dataset, we
might want to know whether or not the factoid is true in that dataset. For example, we might
want to know whether a person Art is the parent of Bob. Answering an atomic true-or-false
question is simply a matter of checking whether the given factoid is a member of the dataset.

A more interesting form of query is a fill-in-the-blanks question. Given a factoid with
blanks, we might want values that, when substituted for the blanks, make the query true. For
example, we might want to look up the children of Art or the parents of Bill or pairs of parents
and children.

An even more interesting form of query is a compound question. We might want values
for which a Boolean combination of conditions is true. For example, we might want whether
Art is the parent of Bob or the parent of Bud. Or we might want to find all people who have
sons and who have no daughters.

We begin this chapter by looking at an extension of our dataset language that allows us
to express such questions. In the next section, we define the syntax of our language; and, in
the section thereafter, we define its semantics. We then look at some examples of using this
language to query datasets. With that introduction behind us, we look at an important syntactic
restriction, called safety. And, finally, we finish by discussing useful predefined concepts (e.g.,
arithmetic operators) that increase the power of our query language.

3.2 QUERY SYNTAX

The language of queries includes the language of datasets but provides some additional features
that make it more expressive, viz. variables and query rules. Variables allow us to write fill-in-the-
blanks queries. Query rules allow us to express compound queries, notably negations (to say that
a condition is false), conjunctions (to say that several conditions are all true), and disjunctions
(to say that at least one of several conditions is true).

24 3. QUERIES
In our query language, a variable is either a lone underscore or a string of letters, digits,

and underscores beginning with an uppercase letter. For example, _, X23, X_23, and Somebody
are all variables.

An atomic sentence, or atom, is analogous to a factoid in a dataset except that the arguments
may include variables as well as symbols. For example, if p is a binary predicate and a is a symbol
and Y is a variable, then p(a,Y) is an atomic sentence.

A literal is either an atom or a negation of an atom. A simple atom is called a positive
literal. The negation of an atom is called a negative literal. In what follows, we write negative
literals using the negation sign ~. For example, if p(a,b) is an atom, then ~p(a,b) denotes the
negation of this atom. Both are literals.

A query rule is an expression consisting of a distinguished atom, called the head and a
collection of zero or more literals, called the body. The literals in the body are called subgoals. The
predicate in the head of a query rule must be a new predicate (i.e., not one in the vocabulary of
our dataset), and all of the predicates in the body must be dataset predicates.

In what follows, we write rules as in the example shown below. Here, goal(a,b) is the
head; p(a,b) & ~q(b) is the body; and p(a,b) and ~q(b) are subgoals.

goal(a,b) :- p(a,b) & ~q(b)

As we shall see in the next section, a query rule is something like a reverse implication—it
is a statement that the head of the rule (i.e., the overall goal) is true whenever the subgoals are
true. For example, the rule above states that goal(a,b) is true if p(a,b) is true and q(b) is
not true.

The expressive power of query rules is greatly enhanced through the use of variables. Con-
sider, for example, the rule shown below. This is a more general version of the rule shown above.
Instead of applying to just the specific objects a and b it applies to all objects. In this case, the
rule states that goal is true of any object X and any object Y if p is true of X and Y and q is not
true of Y.

goal(X,Y) :- p(X,Y) & ~q(Y)

A query is a non-empty, finite set of query rules. Typically, a query consists of just one
rule. In fact, most Logic Programming systems do not support queries with multiple rules (at
least not directly). However, queries with multiple rules are sometimes useful and do not add
any major complexity, so in what follows we allow for the possibility of queries with multiple
rules.

3.3. QUERY SEMANTICS 25

3.3 QUERY SEMANTICS
An instance of an expression (atom, literal, or rule) is one in which all variables have been consis-
tently replaced by ground terms (i.e., terms without variables). For example, if we have a language
with symbols a and b, then the instances of goal(X,Y) :- p(X,Y) & ~q(Y) are shown below.

goal(a,a) :- p(a,a) & ~q(a)
goal(a,b) :- p(a,b) & ~q(b)
goal(b,a) :- p(b,a) & ~q(a)
goal(b,b) :- p(b,b) & ~q(b)

Given this notion, we can define the result of the application of a single rule to a dataset.
Given a rule r and a dataset �, we define v(r ,�) to be the set of all such that (1) is the
head of an arbitrary instance of r , (2) every positive subgoal in the instance is a member of �,
and (3) no negative subgoal in the instance is a member of �.

The extension of a query is the set of all facts that can be “deduced” on the basis of the
rules in the program, i.e., it is the union of v(ri ; �) for each ri in our query.

To illustrate these definitions, consider a dataset describing a small directed graph. In the
sentences below, we use symbols to designate the nodes of the graph, and we use the p relation
to designate the arcs of the graph.

p(a,b)
p(b,c)
p(c,b)

Now suppose we were given the following query. Here, the predicate goal is defined to
be true of every node that has an outgoing arc to another node and also an incoming arc from
that node.

goal(X) :- p(X,Y) & p(Y,X)

Since there are two variables here and three symbols, there are nine instances of this rule,
viz. the ones shown below.

goal(a) :- p(a,a) & p(a,a)
goal(a) :- p(a,b) & p(b,a)
goal(a) :- p(a,c) & p(c,a)
goal(b) :- p(b,a) & p(a,b)
goal(b) :- p(b,b) & p(b,b)
goal(b) :- p(b,c) & p(c,b)

26 3. QUERIES
goal(c) :- p(c,a) & p(a,c)
goal(c) :- p(c,b) & p(b,c)
goal(c) :- p(c,c) & p(c,c)

The body in the first of these instances is not satisfied. In fact, the body is true only in
the sixth and eighth instances. Consequently, the extension of this query contains just the two
atoms shown below.

goal(b)
goal(c)

The definition of semantics in terms of rule instances is simple and clear. However, Logic
Programming systems typically do not implement query processing in this way. There are more
efficient ways of computing such extensions. In subsequent chapters, we look at some algorithms
of this sort.

3.4 SAFETY
A query rule is safe if and only if every variable that appears in the head or in any negative literal
in the body also appears in at least one positive literal in the body.

The rule shown below is safe. Every variable in the head and every variable in the negative
subgoal appears in a positive subgoal in the body. Note that it is okay for the body to contain
variables that do not appear in the head.

goal(X) :- p(X,Y,Z) & ~q(X,Z)

By contrast, the two rules shown below are not safe. The first rule is not safe because the
variable Z appears in the head but does not appear in any positive subgoal. The second rule is
not safe because the variable Z appears in a negative subgoal but not in any positive subgoal.

goal(X,Y,Z) :- p(X,Y)
goal(X,Y,X) :- p(X,Y) & ~q(Y,Z)

To see why safety matters in the case of the first rule, suppose we had a database in which
p(a,b) is true. Then, the body of the first rule is satisfied if we let X be a and Y be b. In this
case, we can conclude that every corresponding instance of the head is true. But what should we
substitute for Z? Intuitively, we could put anything there; but there could be many possibilities.
While this is conceptually okay, it is practically problematic.

To see why safety matters in the second rule, suppose we had a database with just two
facts, viz. p(a,b) and q(b,c). In this case, if we let X be a and Y be b and Z be anything other
than c, then both subgoals are true, and we can conclude goal(a,b,a).

3.5. PREDEFINEDCONCEPTS 27
The main problem with this is that many people incorrectly interpret that negation as

meaning there is no Z for which q(Y,Z) is true, whereas the correct reading is that q(Y,Z)
needs to be false for just one value of Z. As we will see, there are various ways of expressing this
second meaning without writing unsafe queries.

3.5 PREDEFINEDCONCEPTS
In practical logic programming languages, it is common to predefine useful concepts. These
typically include arithmetic functions (such as plus, times, max, min), string functions (such as
concatenation), equality and inequality, aggregates (such as countofall), and so forth.

In Epilog, equality and inequality are expressed using the relations same and distinct.
The sentence same(�,�) is true iff � and � are identical. The sentence distinct(�,�) is true
if and only if � and � are different.

The evaluate relation is used to represent equations involving predefined functions. For
example, we would write evaluate(plus(times(3,3),times(2,3),1),16) to represent the
equation 3^2+2x3+1=16. If height is a binary predicate relating a figure and its height and if
width is a binary predicate relating a figure and its width, we can define the area of the object
as shown below. The area of X is A if the height of X is H and the width of X is W and A is the
result of multiplying H and W.

goal(X,A) :- height(X,H) & width(X,W) & evaluate(times(H,W),A)

In logic programming languages that provide such predefined concepts, there are usually
syntactic restrictions on their use. For example, if a query contains a subgoal with a comparison
relation (such as same and distinct), then every variable that occurs in that subgoal must occur
in at least one positive literal in the body and that occurrence must precede the subgoal with the
comparison relation. If a query uses evaluate in a subgoal, then any variable that occurs in the
first argument of that subgoal must occur in at least one positive literal in the body and that
occurrence must precede the subgoal with the arithmetic relation. Details are typically found in
the documentation of systems that supply such built-in concepts.

In practical logic programming languages, it is also common to include predefined aggre-
gate operators, such as setofall and countofall.

Aggregate operators are typically represented as relations with special syntax. For example
the following rule uses the countofall operator to request the number of a person’s children. N
is the number of children of X if and only if N is the count of all Y such that X is the parent of Y.

goal(X,N) :- person(X) & evaluate(countofall(Y,parent(X,Y)),N)

As with special relations, there are syntactic restrictions on their use. In particular, aggre-
gate subgoals must be safe in that all variables in the second argument must be included in the
first argument or must be used within positive subgoals of the rule containing the aggregate.

28 3. QUERIES

3.6 EXAMPLE –KINSHIP
Consider a variation of the Kinship application introduced in Chapter 2. In this case, our vo-
cabulary consists of symbols (representing people) and a binary predicate parent (which is true
of two people if and only if the person specified as the first argument is the parent of the person
specified as the second argument).

Given data about parenthood expressed using this vocabulary, we can write queries to
extract information about other relationships as well. For example, we can find grandparents
and grandchildren by writing the query shown below. A person X is the grandparent of a person
Z if X is the parent of a person Y and Y is the parent of Z. The variable Y here is a thread variable
that connects the first subgoal to the second but does not itself appear in the head of the rule.

goal(X,Z) :- parent(X,Y) & parent(Y,Z)

In general, we can write queries with multiple rules. For example, we can collect all of
the people mentioned in our dataset by writing the following multi-rule query. In this case the
conditions are disjunctive (at least one must be true), whereas the conditions in the grandfather
case are conjunctive (both must be true).

goal(X) :- parent(X,Y)
goal(Y) :- parent(X,Y)

In some cases, it is helpful to use built-in relations in our queries. For example, we can
ask for all pairs of people who are siblings by writing the query rule shown below. We use the
distinct condition here to avoid listing a person as his own sibling.

goal(Y,Z) :- parent(X,Y) & parent(X,Z) & distinct(Y,Z)

While we can express many common kinship relationships using our query language,
there are some relationships that are just too difficult. For example, there is no way to ask for
all ancestors of a person (parents, grandparents, great grandparents, and so forth). For this, we
need the ability to write recursive queries. We show how to write such queries in the chapter on
view definitions.

3.7 EXAMPLE –MAPCOLORING
Consider the problem of coloring planar maps using only four colors, the idea being to assign
each region a color so that no two adjacent regions are assigned the same color.

A typical map is shown below. Here we have six regions. Some are adjacent to each other,
meaning that they cannot be assigned the same color. Others are not adjacent, meaning that
they can be assigned the same color.

3.7. EXAMPLE –MAPCOLORING 29

3
6

5

4

2

1

We can enumerate the hues to be used as shown below. The constants red, green, blue,
and purple stand for the hues red, green, blue, and purple, respectively.

hue(red)
hue(green)
hue(blue)
hue(purple)

In the case of the map shown above, our goal is to find six hues (one for each region of the
map) such that no two adjacent regions have the same hue. We can express this goal by writing
the query shown below.

goal(C1,C2,C3,C4,C5,C6) :-
hue(C1) & hue(C2) & hue(C3) & hue(C4) & hue(C5) & hue(C6) &
distinct(C1,C2) & distinct(C1,C3) & distinct(C1,C5) & distinct(C1,C6) &
distinct(C2,C3) & distinct(C2,C4) & distinct(C2,C5) & distinct(C2,C6) &
distinct(C3,C4) & distinct(C3,C6) & distinct(C5,C6)

Evaluating this query will result in 6-tuples of hues that ensure that no two adjacent
regions have the same color. In problems like this one, we usually want only one solution rather
than all solutions. However, finding even one solution is such cases can be costly. In Chapter 4,
we discuss ways of writing such queries that makes the process of finding such solutions more
efficient.

30 3. QUERIES

3.8 EXERCISES
3.1. For each of the following strings, say whether it is a syntactically legal query.

(a) goal(X) :- p(a,f(f(X)))
(b) goal(X,Y) :- p(X,Y) & ~p(Y,X)
(c) ~goal(X,Y) :- p(X,Y) & p(Y,X)
(d) goal(P,Y) :- P(a,Y)
(e) goal(X) :- p(X,b) & p(X,p(b,c))

3.2. Say whether each of the following queries is safe.

(a) goal(X,Y) :- p(X,Y) & p(Y,X)
(b) goal(X,Y) :- p(X,Y) & p(Y,Z)
(c) goal(X,Y) :- p(X,X) & p(X,Z)
(d) goal(X,Y) :- p(X,Y) & ~p(Y,Z)
(e) goal(X,Y) :- p(X,Y) & ~p(Y,Y)

3.3. What is the result of evaluating the query goal(X,Z) :- p(X,Y) & p(Y,Z) on the
dataset shown below.

p(a,b)
p(a,c)
p(b,d)
p(c,d)

3.4. Assume we have a dataset with a binary predicate parent (which is true of two people if
and only if the person specified as the first argument is the parent of the person specified
as the second argument). Write a query that defines the property of being childless.
Hint: use the aggregate operator countofall. And be sure your query is safe. (This
exercise is not difficult, but it is slightly tricky.)

3.5. For each of the following problems, write a query to solve the problem. Values should
include just the digits 8, 1, 4, 7, 3 and each digit should be used at most once in the
solution of each puzzle. Your query should express the problem as stated, i.e., you should
not first solve the problem yourself and then have the query simply return the answer.

(a) The product of a 1-digit number and a 2-digit number is 284.
(b) The product of two 2-digit numbers plus a 1-digit number is 3,355.
(c) The product of a 3-digit number and a 1-digit number minus a 1 digit number is

1,137.

