
 		

 Series ISSN 1947-4040

store.morganclaypool.com

Series Editor: Graeme Hirst, University of Toronto

Finite-State Text Processing
Kyle Gorman, Graduate Center, City University of New York
Richard Sproat, Google LLC

Weighted finite-state transducers (WFSTs) are commonly used by engineers and computational
linguists for processing and generating speech and text. This book first provides a detailed introduction
to this formalism. It then introduces Pynini, a Python library for compiling finite-state grammars
and for combining, optimizing, applying, and searching finite-state transducers. This book illustrates
this library’s conventions and use with a series of case studies. These include the compilation and
application of context-dependent rewrite rules, the construction of morphological analyzers and
generators, and text generation and processing applications.

ABOUT SYNTHESIS
This volume is a printed version of a work that appears in the Synthesis Digital Library of Engineering and Computer Science.
Synthesis lectures provide concise original presentations of important research and development topics, published quickly
in digital and print formats. For more information, visit our website: http://store.morganclaypool.com

G
O

R
M

A
N

 • SPR
O

U
T

	
			

FIN
IT

E
-STAT

E
 T

E
X

T
 PR

O
C

E
SSIN

G
		

 		

 M

O
R

G
A

N
 &

 C
LA

Y
P

O
O

L

Finite-State Text Processing

Synthesis Lectures onHuman
Language Technologies

Editor
GraemeHirst,University of Toronto

Synthesis Lectures on Human Language Technologies is edited by Graeme Hirst of the University
of Toronto. The series consists of 50- to 150-page monographs on topics relating to natural
language processing, computational linguistics, information retrieval, and spoken language
understanding. Emphasis is on important new techniques, on new applications, and on topics that
combine two or more HLT subfields.

Finite-State Text Processing
Kyle Gorman and Richard Sproat
2021

Embeddings in Natural Language Processing: Theory and Advances in Vector
Representations of Meaning
Mohammad Taher Pilehvar and Jose Camacho-Collados
2020

Conversational AI: Dialogue Systems, Conversational Agents, and Chatbots
Michael McTear
2020

Natural Language Processing for Social Media, Third Edition
Anna Atefeh Farzindar and Diana Inkpen
2020

Statistical Significance Testing for Natural Language Processing
Rotem Dror, Lotem Peled, Segev Shlomov, and Roi Reichart
2020

Deep Learning Approaches to Text Production
Shashi Narayan and Claire Gardent
2020

https://www.morganclaypoolpublishers.com/catalog_Orig/index.php?cPath=22&sort=2d&series=29
https://www.morganclaypoolpublishers.com/catalog_Orig/index.php?cPath=22&sort=2d&series=29

iv
Linguistic Fundamentals for Natural Language Processing II: 100 Essentials from
Semantics and Pragmatics
Emily M. Bender and Alex Lascarides
2019

Cross-Lingual Word Embeddings
Anders Søgaard, Ivan Vulić, Sebastian Ruder, Manaal Faruqui
2019

Bayesian Analysis in Natural Language Processing, Second Edition
Shay Cohen
2019

Argumentation Mining
Manfred Stede and Jodi Schneider
2018

Quality Estimation for Machine Translation
Lucia Specia, Carolina Scarton, and Gustavo Henrique Paetzold
2018

Natural Language Processing for Social Media, Second Edition
Atefeh Farzindar and Diana Inkpen
2017

Automatic Text Simplification
Horacio Saggion
2017

Neural Network Methods for Natural Language Processing
Yoav Goldberg
2017

Syntax-based Statistical Machine Translation
Philip Williams, Rico Sennrich, Matt Post, and Philipp Koehn
2016

Domain-Sensitive Temporal Tagging
Jannik Strötgen and Michael Gertz
2016

Linked Lexical Knowledge Bases: Foundations and Applications
Iryna Gurevych, Judith Eckle-Kohler, and Michael Matuschek
2016

Bayesian Analysis in Natural Language Processing
Shay Cohen
2016

v
Metaphor: A Computational Perspective
Tony Veale, Ekaterina Shutova, and Beata Beigman Klebanov
2016

Grammatical Inference for Computational Linguistics
Jeffrey Heinz, Colin de la Higuera, and Menno van Zaanen
2015

Automatic Detection of Verbal Deception
Eileen Fitzpatrick, Joan Bachenko, and Tommaso Fornaciari
2015

Natural Language Processing for Social Media
Atefeh Farzindar and Diana Inkpen
2015

Semantic Similarity from Natural Language and Ontology Analysis
Sébastien Harispe, Sylvie Ranwez, Stefan Janaqi, and Jacky Montmain
2015

Learning to Rank for Information Retrieval and Natural Language Processing, Second
Edition
Hang Li
2014

Ontology-Based Interpretation of Natural Language
Philipp Cimiano, Christina Unger, and John McCrae
2014

Automated Grammatical Error Detection for Language Learners, Second Edition
Claudia Leacock, Martin Chodorow, Michael Gamon, and Joel Tetreault
2014

Web Corpus Construction
Roland Schäfer and Felix Bildhauer
2013

Recognizing Textual Entailment: Models and Applications
Ido Dagan, Dan Roth, Mark Sammons, and Fabio Massimo Zanzotto
2013

Linguistic Fundamentals for Natural Language Processing: 100 Essentials from
Morphology and Syntax
Emily M. Bender
2013

vi
Semi-Supervised Learning and Domain Adaptation in Natural Language Processing
Anders Søgaard
2013

Semantic Relations Between Nominals
Vivi Nastase, Preslav Nakov, Diarmuid Ó Séaghdha, and Stan Szpakowicz
2013

Computational Modeling of Narrative
Inderjeet Mani
2012

Natural Language Processing for Historical Texts
Michael Piotrowski
2012

Sentiment Analysis and Opinion Mining
Bing Liu
2012

Discourse Processing
Manfred Stede
2011

Bitext Alignment
Jörg Tiedemann
2011

Linguistic Structure Prediction
Noah A. Smith
2011

Learning to Rank for Information Retrieval and Natural Language Processing
Hang Li
2011

Computational Modeling of Human Language Acquisition
Afra Alishahi
2010

Introduction to Arabic Natural Language Processing
Nizar Y. Habash
2010

Cross-Language Information Retrieval
Jian-Yun Nie
2010

vii
Automated Grammatical Error Detection for Language Learners
Claudia Leacock, Martin Chodorow, Michael Gamon, and Joel Tetreault
2010

Data-Intensive Text Processing with MapReduce
Jimmy Lin and Chris Dyer
2010

Semantic Role Labeling
Martha Palmer, Daniel Gildea, and Nianwen Xue
2010

Spoken Dialogue Systems
Kristiina Jokinen and Michael McTear
2009

Introduction to Chinese Natural Language Processing
Kam-Fai Wong, Wenjie Li, Ruifeng Xu, and Zheng-sheng Zhang
2009

Introduction to Linguistic Annotation and Text Analytics
Graham Wilcock
2009

Dependency Parsing
Sandra Kübler, Ryan McDonald, and Joakim Nivre
2009

Statistical Language Models for Information Retrieval
ChengXiang Zhai
2008

Copyright © 2021 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by anymeans—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Finite-State Text Processing

Kyle Gorman and Richard Sproat

www.morganclaypool.com

ISBN: 9781636391137 paperback
ISBN: 9781636391144 ebook
ISBN: 9781636391151 hardcover

DOI 10.2200/S01086ED1V01Y202104HLT050

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON HUMAN LANGUAGE TECHNOLOGIES

Lecture #50
Series Editor: Graeme Hirst, University of Toronto
Series ISSN
Print 1947-4040 Electronic 1947-4059

www.morganclaypool.com

Finite-State Text Processing

Kyle Gorman
Graduate Center, City University of New York

Richard Sproat
Google LLC

SYNTHESIS LECTURES ON HUMAN LANGUAGE TECHNOLOGIES #50

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
Weighted finite-state transducers (WFSTs) are commonly used by engineers and computational
linguists for processing and generating speech and text. This book first provides a detailed intro-
duction to this formalism. It then introduces Pynini, a Python library for compiling finite-state
grammars and for combining, optimizing, applying, and searching finite-state transducers. This
book illustrates this library’s conventions and use with a series of case studies. These include the
compilation and application of context-dependent rewrite rules, the construction of morpho-
logical analyzers and generators, and text generation and processing applications.

KEYWORDS
automata, finite automata, finite-state automata, finite-state transducers, grammar
development, language processing, speech processing, state machines, text genera-
tion, text processing, Python, Pynini

xi

Contents
Preface . xv

Acknowledgments . xvii

1 Finite-StateMachines . 1
1.1 State Machines . 2
1.2 Formal Preliminaries . 4

1.2.1 Sets . 4
1.2.2 Relations and Functions . 5
1.2.3 Strings and Languages . 5

1.3 Acceptors and Regular Languages . 6
1.3.1 Finite-State Acceptors . 6
1.3.2 Regular Languages . 7
1.3.3 Regular Expressions . 8

1.4 Transducers and Rational Relations . 8
1.4.1 Finite-State Transducers . 8
1.4.2 Rational Relations . 9

1.5 Weighted Acceptors and Languages . 10
1.5.1 Monoids and Semirings . 10
1.5.2 Weighted Finite Acceptors . 12
1.5.3 Weighted Regular Languages . 13

1.6 Weighted Transducers and Relations . 13
1.6.1 Weighted Finite Transducers . 14
1.6.2 Weighted Rational Relations . 14

2 ThePynini Library . 17
2.1 Design . 17
2.2 Conventions . 18

2.2.1 Copying . 19
2.2.2 Labels . 19
2.2.3 States . 19
2.2.4 Iteration . 19

xii
2.2.5 Weights . 20
2.2.6 Properties . 20

2.3 String Conversion . 21
2.3.1 Text Encoding . 21
2.3.2 String Compilation . 24
2.3.3 String Printing . 26

2.4 File Input and Output . 28
2.5 Alternative Software . 29

3 Basic Algorithms . 31
3.1 Concatenation . 32
3.2 Closure . 33
3.3 Range Concatenation . 34
3.4 Union . 34
3.5 Composition . 35
3.6 Difference . 38
3.7 Cross-Product . 38
3.8 Projection . 39
3.9 Inversion . 40
3.10 Reversal . 41

4 Advanced Algorithms . 43
4.1 Optimization . 43
4.2 Shortest Distance . 44
4.3 Shortest Path . 46

5 Rewrite Rules . 49
5.1 The Formalism . 49

5.1.1 Directionality . 52
5.1.2 Boundary Symbols . 53
5.1.3 Generalization . 54
5.1.4 Abbreviatory Devices . 54
5.1.5 Constraint-Based Formalisms . 56

5.2 Rule Compilation . 56
5.2.1 The Algorithm . 57
5.2.2 Efficiency Considerations . 59

xiii
5.2.3 Rule Compilation in Pynini . 59

5.3 Rule Application . 60
5.3.1 Lattice Construction . 60
5.3.2 String Extraction . 60
5.3.3 Rewriting Libraries . 62

5.4 Rule Interaction . 62
5.4.1 Two-Level Rules . 62
5.4.2 Cascading . 63
5.4.3 Exclusion . 64

5.5 Examples . 67
5.5.1 Spanish Grapheme-to-Phoneme Conversion 67
5.5.2 Finnish Case Suffixes . 71
5.5.3 Currency Expression Tagging . 73

6 Morphological Analysis andGeneration . 77
6.1 Applications . 78
6.2 Word Formation . 80
6.3 Features . 81
6.4 Paradigms . 82
6.5 Examples . 82

6.5.1 Russian Nouns . 82
6.5.2 Tagalog Infixation . 86
6.5.3 Yowlumne Aspect . 88
6.5.4 Latin Verbs . 91

7 Text Generation and Processing . 93
7.1 Fuzzy String Matching . 93
7.2 Date Tagging . 96
7.3 Number Naming . 97
7.4 Chatspeak Normalization . 98
7.5 T9 Disambiguation . 101
7.6 Weather Report Generation . 102

8 TheFuture . 105
8.1 Hybridization . 106
8.2 Hardware Customization . 107
8.3 Subregular Grammar Induction . 108

xiv

A Pynini Installation . 109
A.1 Anaconda Installation . 109
A.2 Source Installation . 109
A.3 Optional Dependencies . 111

B Pynini Bracket Parsing . 113

C Pynini Extended Library . 115

D Pynini Examples Library . 117

E Pynini Export Library . 119

Bibliography . 121

Authors’ Biographies . 137

Index . 139

xv

Preface
This book is our attempt to provide a “one-stop” reference for engineers and linguists inter-
ested in using finite-state technologies for text generation and processing. As such, it begins
with formal language and automata theory, topics covered in much greater detail by textbooks
such as Hopcroft et al. 2008 and handbook chapters such as Mohri 2009. In our experience,
full command of finite-state technologies requires familiarity with a number of matters that
have not received much attention in prior literature. Among these topics is the theory of semir-
ings, and algorithms specific to weighted automata such as the shortest-distance and shortest-
path algorithms. These formalisms and algorithms are key for finite-state speech recognition.
Furthermore, there exist many text processing applications that resemble weighted finite-state-
based speech recognition insofar as hypotheses—that is, possible output strings—are repre-
sented as paths through a lattice constructed via composition of weighted automata, and in-
ference/decoding involves computing the shortest path.

Users interested in text applications also stand to benefit from lesser-known “tricks of the
trade” for finite-state development. These tricks include fuzzy string matching (Figure 7.1), ef-
ficient algorithms for optimizing arbitrary weighted finite-state transducers (section 4.1), com-
piling rewrite rules (section 5.2) and morphological analyzers and generators (chapter 6), and
applying these transducers to sets of strings (section 5.3).

At the same time, we wish to go beyond algebraic formalisms and pseudocode. Thus,
we illustrate our examples with Pynini, an open-source Python library for weighted finite-state
transducers developed at Google. Still, we are skeptical that anything made out of dead trees is
an appropriate medium for documenting a rapidly changing software library. So whereas earlier
texts like Finite State Morphology (Beesley and Karttunen 2003) are in some sense about the
Xerox finite-state toolkit as it existed at the time, we hope that this is not merely a book about
Pynini. It is our hope that this melange of formalisms and algorithms, code and applications,
meets the needs of our readers.

Finally, in the current age we would be remiss if we did not stress the importance of ethi-
cal use of this—or indeed any—technology. Ten years ago, Sproat (2010a:255) pointed out the
potential dangers for society of language technology and its misuse, especially on social me-
dia platforms, noting that “language can be abused, and so can the technology that supports
it”. The recent rise in disinformation on social media has unfortunately made those concerns
seem all too prophetic. The ongoing pandemic, aggravated in large part by disinformation, has
brought these dangers into even starker relief. It is therefore our profound hope that the tech-
nology described in this book only be used for the betterment of humankind. One example of
this sort suggests itself: Markov et al. (2021) describe how regular expression matching is used

xvi PREFACE
to determine whether a post on social media mentions COVID-19 so it can be screened for
disinformation.

Kyle Gorman and Richard Sproat
April 2021

xvii

Acknowledgments
We first owe an enormous debt to the many Google engineers who have contributed over the
years to the OpenFst and OpenGrm libraries, particularly Cyril Allauzen, Brian Roark, Michael
Riley, and Jeffrey Sorensen. Substantial improvements to the Pynini library have been made by
Lawrence Wolf-Sonkin, and this book has greatly benefited from the user community of Google
linguists, especially Sandy Ritchie. Thanks to Anssi Yli-Jyrä and an anonymous reviewer for
their detailed reviews; to Jeffrey Heinz for detailed feedback on our pre-final draft; to Alëna
Aksënova, Hossep Dolatian, Jordan Kodner, Constantine Lignos, Fred Mailhot, and Arya Mc-
Carthy, who provided useful comments on early drafts of the book; and to Chandan Narayan
for notes on Pān

˙
ini.

Kyle Gorman and Richard Sproat
April 2021

1

C H A P T E R 1

Finite-StateMachines
This is a book aboutweightedfinite-state transducers (WFSTs) and their use in text generation
and processing. The WFST formalism synthesizes decades of research into graphs, automata,
and formal languages, including lines of research blossoming long before the era of ubiquitous
digital computing.

The history of finite-state technology stretches back almost a century. Some key theorems
and algorithms were discovered—and rediscovered—long before computers became powerful
enough to exploit them (see chapter 5 for an example) and in some cases decades have elapsed
between discovery and software implementation. Some essential algorithms were not gener-
alized until the 1990s or later, as part of efforts—particularly at AT&T Bell Labs, and later at
Google—to use WFSTs for scalable automatic speech recognition and text-to-speech synthesis.

A few key notions connect these disparate areas of research and application. The first
is that of the state machine, a sort of abstract mathematical model of computation of which
weighted finite-state transducers are a special case. Such models, first formalized by Turing
(1936), are not only the foundation of the theory of computation—quite literally, the study of
what it means to compute—but also inspired the creation of ENIAC, the first general-purpose
digital computer, a decade later. The second is that of formal languages. While the origins of
formal language theory can be traced at least as far back as Thue (1914), perhaps the most im-
portant contribution is a study by Kleene (1956) first circulated in 1951. Kleene’s study springs
from an obscure goal: the formal characterization of the expressive capacity of “nerve nets”, a
primitive form of artificial neural network proposed by McCulloch and Pitts (1943) a few years
prior. To do so, Kleene introduces a family of formal languages called the “regular languages”
and established strong connections between the algebraic characterizations of formal language
theory and the automata (i.e., state machine) characterizations used by Turing and others. This
body of work was an enormous inspiration in the development of modern linguistic theory—
generative grammar in particular (Chomsky 1963)—and also contributed to the theory of com-
pilers, computer programs which translate other computer programs. This chapter traces these
two threads—automata and formal languages—and their relationship.

All of this effort, by some of the greatest scientific minds of the early 20th century,
could easily have come to naught had the objects of study—regular languages and finite-state
automata—turned out to have limited real-world relevance. But it turns out that these exhibit
tantalizing similarities to phenomena found in natural—that is, human—languages, a fact which
has only become clearer with time. A few examples should suffice. It is now believed that vir-

2 1. FINITE-STATEMACHINES
tually all patterns that define the phonology—or the grapheme-to-phoneme rules—of natural
languages can be expressed as relations between regular languages. The hypothesis space of au-
tomatic speech recognizers, consisting of a probabilistic mapping between acoustic observations
and word sequences, can also be compactly expressed as a relation between two regular lan-
guages. Finally, many text generation and processing problems can be framed as transductions
between regular languages. Thanks to Kleene and others, it is known that these types of relations
can be encoded by state machines, and subsequent work introduces techniques for combining,
applying, optimizing, and searching these machines.

1.1 STATEMACHINES
A state machine is hardware or software whose behavior can be described solely in terms of a
set of states and arcs, which represent transitions between those states. In this formalism, states
roughly correspond to “memory” and arcs to “operations” or “computations”. State machines are
examples of what computer scientists call directed graphs.1 These are “directed” in the sense
that the existence of an arc from state q to state r does not imply an arc from r to q. A finite-
state machine is merely a state machine with a finite, predetermined set of states and labeled
arcs.

One familiar example of a state machine—encoded in hardware, rather than software—
is the old-fashioned gumball machine (Figure 1.1). Such machines can be in any one of three
states at a time, and each state is associated with actions such as

• turning the knob,

• inserting a coin, or

• emitting a gumball.

At one state, arbitrarily called state 0, it is possible to turn the knob, but this has no effect on
the behavior of the machine. If, on the other hand, one inserts the appropriate coin(s), that
transitions the machine to a state 1, at which point a subsequent turn of the knob will cause the
machine to emit a gumball and return to state 0. This of course is an idealization of real-world
gumball machines, which may experience mechanical failure or run out of gumballs. Without a
shop-keeper around to service the machine, model and reality necessarily diverge.

The description of the gumball machine above is given a graphical representation in Fig-
ure 1.2. By convention, the bold outline of state 0 indicates that it has been—arbitrarily—chosen
as the start or initial state; the double-struck outline indicates that it is also a final state; these
notions will be formalized shortly. Valid transitions between states are indicated with arrows.
These arcs are labeled with pairs of actions. Here, the inputs are user actions and the outputs
are gumballs. The Greek letter � (“epsilon”) is used to represent the absence of an input and/or

1 The primary difference is terminological; what are here called states and arcs are known in other communities as
“vertices” and “edges”, respectively.

1.1. STATEMACHINES 3

Figure 1.1: An old-fashioned gumball machine. (Image credit: Dario Lo Presti/Shutterstock.
com)

insert-coin:ǫ

turn-knob:emit-gumball

turn-knob:ǫ

10

Figure 1.2: An old-fashioned gumball machine schematized as a state machine.

output for a given arc. Because, as mentioned, turning the knob at state 0 produces no output
and does not change the state of the machine, there is a self-arc at state 0 labeled turn-knob:�.
On the other hand, inserting a coin at state 0 produces no observable output, but it transitions
the machine to state 1. At this state a knob turn by the user causes the machine to emit a gumball
and return to state 0.

Shutterstock.com
Shutterstock.com

4 1. FINITE-STATEMACHINES
We now provide definitions for various types of finite-state machine, after reviewing some

formal preliminaries.

1.2 FORMALPRELIMINARIES

This section provides a brief introduction to set theory and related topics. Those readers already
familiar with sets, relations, functions, strings, and languages are welcome to skip to section 1.3.

1.2.1 SETS
Sets are abstract, unordered collections of distinct objects. They are an abstract, purely logical
notion, and their definition does not presuppose any particular method of representing them in
hardware or software; they are unordered in the sense that there is no natural ordering among
the elements ormembers of any set. By convention, sets are represented using uppercase Greek
or Italic letters, and elements of sets are denoted using lowercase Italic letters. Set membership
is indicated using the 2 symbol, e.g., x 2 X is read “x is a member of X”. Non-membership is
written using the … symbol, e.g., x … X is read “x is not a member of X”.

Members of a set can be any type of object, including other sets. There are several ways
to specify the members of a set. First, for finite sets, one can simply list the elements in the
set enclosed in curly braces, a representation called extensional or list notation. For instance,
f2; 3; 5; 7g is the finite set of prime numbers less than 10. An alternative notation, and the only
one which can be used to denote infinite sets, uses a predicate such that if some element satis-
fies the predicate, that element is a member of a set; this is known as intensional, predicate,
set-builder, or set-former notation. For instance, one might indicate the infinite set of prime
numbers using the notation fx j prime.x/g. Finally, special notation is used for the empty set,
the set with no elements: it is written ;. The cardinality of a set X , written jX j, is the number
of distinct elements in the set.

A set X is said to be a subset of another set Y if every element in X is also a member of
Y . This property is written using the � operator, e.g., X � Y is read “X is a subset of Y ”. X is
a proper subset of Y (X � Y) if and only if X is a subset of Y and X ¤ Y .

There are various logical operations over sets. Given two sets X and Y , their intersection
X \ Y is the set that contains all elements which aremembers of both X and Y : that is, X \ Y D

fz j z 2 X ^ z 2 Y g where ^ represents logical AND. Given two sets X and Y , their union
X [Y is the set that contains all elements which are members of X , Y , or both: that is, X [Y D

fz j z 2 X _ z 2 Y g where _ represents logical OR. Finally, their difference X � Y is the set
that contains all elements which are members of X but not of Y : that is, X � Y D fz j z 2

X ^ z … Y g.

1.2. FORMALPRELIMINARIES 5

1.2.2 RELATIONSANDFUNCTIONS
A pair or two-tuple is a sequence of two elements, e.g., .a; b/ is the pair consisting of a then b.
This is used to define an operation over sets known as the cross-product or Cartesian product.
Given two sets X and Y , their cross-product X � Y is the set containing all ordered pairs .x; y/

where x is an element of X and Y is an element of Y .That is, X � Y D f.x; y/ j x 2 X ^ y 2 Y g.
A relation—specifically, a binary or two-way relation—over sets X and Y is a subset of

the cross-product X � Y . In this book, relations are indicated using lowercase Greek letters, and
the domain—set of inputs—and range (or more properly, the codomain)—the set of outputs—
are usually provided upon first definition. For instance, the expression
 � X � Y indicate that

 is a relation with domain X and range Y . Relations represent mappings between elements
of the domain and elements of the range; for instance, the “less than” relation can be written
� � R �R D f.x; y/ j x < yg where R is the set of real numbers.

A function is a relation for which every element of the domain is associated with exactly
one element of the range. The “less than” relation above is not a function because, for example,
there are an infinitude of real numbers that are less than any other real number. However, the
“successor” relation � � N �N D f.x; x C 1/ j x 2 Ng, where N is the set of natural numbers,
is a function, because each natural number has exactly one successor.

Three-, four-, and five-way relations, and so on, are all well-defined, though there is no
such generalization for functions, since n-way relations where n > 2 lack well-defined domain
and range. However, one can redefine any n-way relation into a two-way relation by grouping
the various sets into domain and range; for instance, a four-way relation over A � B � C �D

can be redefined as a two-way relation (and possibly, a function) with domain A � B and range
C �D. Such a relation might be defined as a subset of A � B ! C �D, with the arrow used
to indicate the partition into domain and range.

The application of an input argument to a relation or function can be indicated using
square brackets. For instance, given the successor function � , then �Œ3� D f4g because .3; 4/ 2 � .

Given a relation
 � X � Y and x 2 X ,
Œx� # indicates that
 is well defined at x and

Œx� " indicates that
 is undefined at x. A relation or function is said to be total if it is defined
for all values of the domain. The less-than relation and successor functions, for example, are both
total.

1.2.3 STRINGSANDLANGUAGES
Many of the sets defined below contain a type of element known as a string. Let † be a set of
symbols called the alphabet. A string is a finite ordered sequence of zero or more elements from
the alphabet. By convention, the empty string is indicated by �. Note that � is not a member of
†.

The concatenation of two strings is the string produced by joining the two strings end-
to-end. The concatenation of two strings x; y is written xy. Note that � is the concatenative
identity, thus x� D �x D x for all x.

6 1. FINITE-STATEMACHINES

A set of zero or more strings is known as a language.2 Since languages are sets, opera-
tions such as intersection, union, and difference are well defined. In addition, concatenation can
also be generalized to languages, i.e., given languages X and Y , XY D fxy j x 2 X ^ y 2 Y g.
One other operation over languages is closure. First, the notation Xn, where n is a natu-
ral number, denotes a language consisting of n self-concatenations of X ; e.g., X0 D f�g and
X4 D XXXX . The (concatenative) closure of a language X is an infinite union of zero or
more concatenations of X with itself. It is notated with a superscripted asterisk, e.g., X� DS

i�0 X i D f�g [X [XX [XXX [: : :. One variant of closure, indicated with a superscript
plus-sign, excludes the empty string, e.g., XC D

S
i>0 X i D X [XX [XXX [: : :, or equiv-

alently, XC D XX�. These two variants of closure are sometimes referred to as Kleene star and
Kleene plus, respectively. Finally, a superscripted question mark is used to indicate optionality,
e.g., X ‹ D f�g [X .

1.3 ACCEPTORSANDREGULARLANGUAGES
Finite acceptors are the simplest form of finite automata, in some ways simpler than the model of
a gumball machine presented above. They represent a family of string sets known as the regular
languages.

1.3.1 FINITE-STATEACCEPTORS
A finite-state acceptor (FSA) is a five-tuple consisting of

1. a finite set of states Q,

2. a start or initial state s 2 Q,

3. a set of final (or accepting) states F � Q,

4. an alphabet †, and

5. a transition relation ı � Q � .† [f�g/ �Q.

Note that as formalized here, there is only one start state but there may be many final states;
also note that the start state may itself be a final state.3

An FSA is said to accept a string if there exists a path from the initial state to some final
state, and the labels of the arcs traversed by that path correspond to the string in question. The
set of all strings so accepted by an FSA is called its language. More formally, given two states
q; r 2 Q and a symbol z 2 † [f�g, .q; z; r/ 2 ı implies that there is an arc from state q to state
r with label z. A path through a finite acceptor is a pair of

2 This is not intended to supplant common-sense notions of what a language is; it is merely a term of art.
3 One could allow for arbitrarily many start states, but given any finite automaton with multiple start states S � Q, it is

trivial to construct an equivalent automaton with a single “superinitial” start state. Alternatively, one could limit the formalism
to a single “superfinal” final state f 2 Q.

1.3. ACCEPTORSANDREGULARLANGUAGES 7
1. a state sequence q1; q2; : : : ; qn 2 Qn and a

2. a string z1; z2; : : : ; zn 2 .† [f�g/n,

subject to the constraint that 8i 2 Œ1; n� W .qi ; zi ; qiC1/ 2 ı; that is, there exists an arc from qi to
qiC1 labeled zi . A path that visits a state more than one time—i.e., if its state sequence contains
the start state s or any repeated states—has a cycle. Automata are cyclic if any of their paths
contain cycles and acyclic otherwise.

A path is said to be complete if

1. .s; z1; q1/ 2 ı and

2. qn 2 F .

That is, a complete path must also begin with an arc from the initial state s to q1 labeled z1 and
terminate at a final state. Henceforth, without loss of generality, �-labels are omitted from path
strings because � signals the absence of a symbol and therefore can be ignored. Indeed, for every
FSA, there is an equivalent �-free FSA, i.e., an FSA which accepts the same language but which
has no �-arcs, computed with the �-removal algorithm (Mohri 2002a). Then, an FSA accepts
or recognizes a string z 2 †� if there exists a complete path with string z. The set of strings
accepted by an FSA is called its language.

1.3.2 REGULARLANGUAGES
The family of languages recognized by finite acceptors are the regular languages. Kleene (1956)
provides an algebraic characterization. Given an alphabet †:

1. The empty language ; is a regular language.

2. The empty string language f�g is a regular language.

3. If s 2 †, then the singleton language fsg is a regular language.

4. If X is a regular language, then its closure X� is a regular language.

5. If X; Y are regular languages, then:

• their concatenation XY is a regular language, and
• their union X [Y is a regular language.

6. Languages which cannot be derived as above are not regular languages.

Kleene (ibid.) also shows that every finite acceptor corresponds to a regular language and that
every regular language corresponds to a finite acceptor. This result, known as Kleene’s theorem,
implies that operations over languages such as closure, concatenation, and union are defined not
only for languages but also for finite acceptors.

8 1. FINITE-STATEMACHINES

0
a

a

0
a

c

b
1

1

3

2

Figure 1.3: Finite acceptors for the languages fagC (left) and a.b [c/ (right).

Two examples of FSAs and their corresponding regular languages are shown in Fig-
ure 1.3 as state transition diagrams. The left pane contains an FSA defined by Q D f0; 1g,
s D 0, F D f1g, † D fag, and ı D f..0; a/; 1/; ..1; a/; 1/g, which accepts the infinite language
fagC D fa; aa; aaa; : : :g. The right pane shows an FSA which accepts the finite language a.b [
c/ D fab; acg. The reader is encouraged to study these acceptors and manually trace the genera-
tion of a few strings.

1.3.3 REGULAREXPRESSIONS
Regular expressions are a declarative notational scheme used to characterize the regular lan-
guages (Hopcroft et al. 2008: ch. 3). One can convert any finite acceptor to a regular expression,
and any regular expression to a finite automaton. However, implementations of regular expres-
sions in many programming languages—for instance, the one implementation used in Python’s
built-in re module—include additional features which cannot be encoded using regular lan-
guages or finite-state acceptors.

1.4 TRANSDUCERSANDRATIONALRELATIONS
Finite transducers are a generalization of finite acceptors. Rather than modeling languages, they
model rational relations between pairs of languages, and as such they can be used to encode
string-to-string transductions.4

1.4.1 FINITE-STATETRANSDUCERS
A finite-state transducer (FST) is a six-tuple consisting of

1. a finite set of states Q,

2. a start state s 2 Q,

3. a set of final states F � Q,

4 It is possible to generalize rational relations, and finite-state transducers, to relations between sets of more than two
languages. This generalization is not discussed here as it is only rarely employed in computational linguistics, but see, e.g., Kay
1987, Kiraz 2001, or Hulden 2017.

1.4. TRANSDUCERSANDRATIONALRELATIONS 9
4. an input alphabet †,

5. an output alphabet ˆ, and

6. a transition relation ı � Q � .† [f�g/ � .ˆ [f�g/ �Q.

The first three elements are also used in the definition of FSAs; the latter three are novel. The
key distinction between FSAs and FSTs is that in the latter case, arcs bear pairs of labels, one
drawn from an input alphabet and the other from a (possibly disjoint) output alphabet. A path
through a finite transducer is a triple consisting of

1. a state sequence q1; q2; : : : ; qn 2 Qn,

2. an input string x1; x2; : : : ; xn 2 .† [f�g/n, and

3. an output string y1; y2; : : : ; yn 2 .ˆ [f�g/n,

subject to the constraint that 8i 2 Œ1; n� W .qi ; xi ; yi ; qiC1/ 2 ı. A complete path is a path where

1. .s; x1; y1; q1/ 2 ı and

2. qn 2 F .

That is, a complete path must also begin with a transition from the initial state s to qi with input
label xi and output label yi and halt in a final state. Without loss of generality, and once again
ignoring the presence of �, the domain †� and range ˆ� of an FST are both themselves regular
languages, and the FST itself can be interpreted as a relation, a subset of the cross-product
†� �ˆ�. Then, an FST transduces or maps from x 2 †� to y 2 ˆ� so long as a complete
path with input string x and output string y exists. However, unlike FSAs, not all FSTs have
an equivalent �-free form. For example, consider an FST mapping from two-character U.S.
state abbreviations (e.g., OH) to state names (Ohio); a fragment of such an FST is shown in
Figure 1.4. Here, arcs with � input labels are necessary to allow input strings which are shorter
than the corresponding output strings. Note also that the �-removal algorithm mentioned in
subsection 1.3.1 removes �-arcs—those which have � as both input and output labels—not �-
labels in general.

1.4.2 RATIONALRELATIONS
The family of string relations that can be encoded as a finite-state transducer are the ratio-
nal relations. Like regular languages, closure, concatenation, and union are all well defined for
rational relations. The rational relations are closed under these operations, meaning that the clo-
sure of a rational relation, or the concatenation or union of two or more rational relations, are
also rational relations. However, there are other operations, such as difference, under which the
regular languages are closed but the rational relations are not.

10 1. FINITE-STATEMACHINES

I:I
E:a

H:h

R:r

T:t

A:o
ǫ:w

ǫ:i

ǫ:i

ǫ:e

ǫ:a

ǫ:n

ǫ:e

ǫ:o

ǫ:g ǫ:o

ǫ:h

ǫ:n

ǫ:a

M:M

O:O

U:U

0

15 16
17

11 12 13 14

4 9 10

5 6 7 8
1

2 3

18

Figure 1.4: Fragment of a FST mapping from state abbreviations to state names.

Rational relations are closely related to, but distinct from, regular expression substitu-
tions (e.g., as performed by Python’s re.sub function).5 On one dimension, regular expression
substitutions are less expressive than rational relations, because the former permitmany-to-many
(rather than merely one-to-one and many-to-one) transductions, whereas the pattern matched
by a re.sub is an arbitrary regular language, the substitution must be a single string. Neither
finite state transducers nor the rational relations are restricted in this fashion. At the same time,
re.sub implements other mechanisms that make it more expressive than rational relations.

1.5 WEIGHTEDACCEPTORSANDLANGUAGES
The above formalisms also permit an extension in which acceptors and transducers—and lan-
guages and relations—are generalized by attaching weights to states and arcs. These weights can
represent virtually any set so long as the set and associated operations obey certain constraints
decribed below. Language models, probability distributions over strings, can be compactly en-
coded as weighted acceptors (e.g., Allauzen et al. 2003, 2005, Roark et al. 2012); hiddenMarkov
models can be encoded as weighted transducers (Roche and Schabes 1995) as can sequential lin-
earmodels (Wu et al. 2014) and decoder graphs for automatic speech recognition engines (e.g.,
Mohri 1997, Mohri et al. 2002). Below, semirings are defined and exemplified and then used
to generalize earlier definitions of automata, languages, and relations.

1.5.1 MONOIDSANDSEMIRINGS
Weighted automata algorithms are defined with respect to an algebraic system known as a
semiring (Kuich and Salomaa 1986). It is first necessary to define a related notion, monoids.

5 https://docs.python.org/3/library/re.html#re.sub

https://docs.python.org/3/library/re.html#re.sub

1.5. WEIGHTEDACCEPTORSANDLANGUAGES 11
A monoid, is an ordered pair .K; �/ where K is a set and � is a binary operator over K with the
properties of

1. closure: 8a; b 2 K W a � b 2 K,

2. associativity: 8a; b; c 2 K W .a � b/ � c D a � .b � c/, and

3. identity: 9e 2 K W e � a D a � e D a.

A monoid is said to be commutative if 8a; b 2 K W a � b D b � a. Then, a semiring is then a
five-tuple .K;˚;˝; N0; N1/ such that

1. the pair .K;˚/ form a commutative monoid with identity element N0,

2. the pair .K;˝/ form a monoid with identity element N1,

3. 8a; b; c 2 K W a˝ .b ˚ c/ D .a˝ b/˚ .a˝ c/, and

4. 8a 2 K W a˝ N0 D N0˝ a D N0.

These constraints require that ˚ is commutative, that N0 is the additive identity, that N1 is the
multiplicative identity, that ˝ distributes over ˚, and that N0 is the multiplicative annihilator
(i.e., that any weight multiplied with N0 is N0). Some common semirings are shown in Table 1.1.
The Boolean semiring consists of true (1) and false (0) values and logical OR and AND op-
erators. The probability semiring ranges over positive real numbers RC and employs the ex-
pected C and � arithmetic operations for ˚ and ˝.6 The log semiring is the projection of
the probability semiring onto the log domain.7 The log semiring uses the logarithmic identity
ln.xy/ D ln x C ln y to replace multiplication with addition in the log domain; this helps to
avoid arithmetic underflow when weight computations are performed with floating-point num-
bers. The definition of addition in this semiring is somewhat more complex: ˚ D ˚log where
a˚log b D � ln.e�a C e�b/. Finally, the tropical semiring is identical to the log semiring ex-
cept that ˚ D min.8

A semiring is said to exhibit the path property (or to be a path semiring) if for all a; b 2

K W a˚ b 2 fa; bg. The tropical semiring has this property—the minimum of any two numbers
must be one of those two numbers—as does the boolean semiring. Non-path semirings such
as the probability semiring and log semirings define ˚ in a way with common-sense arithmetic
notions, making them suitable for applications that involve counting. One example of this is the
expectation maximization algorithm, commonly used to learn free parameters of ASR models.
In contrast, path semirings are used for decoding because the path property is required efficiently
compute the shortest path(s) through weighted automata (section 4.3).

6For probabilities, only numbers between 0 and 1 inclusive make sense, but numbers in the range .1; C1� serve as
inverse elements.

7 The OpenFst library use the natural logarithm, specifically.
8 The tropical semiring is named in tribute to the late mathematician Imre Simon of the University of São Paulo. We

note that São Paulo is just south of the Tropic of Capricorn, so “subtropical” would have been more apt.

12 1. FINITE-STATEMACHINES

Table 1.1: Some commonly used semirings for finite-state applications; R and RC denote the
real, and positive real, numbers, respectively.

© − 0 1

Boolean {0, 1} _ ^ 0 1

Probability + + × 0 1

Log [{±∞} ©log + +∞ 0

Tropical [{±∞} min + +∞ 0

1.5.2 WEIGHTEDFINITEACCEPTORS
A weighted finite-state acceptor (WFSA) is an FSA in which weights are associated with arcs
and states. It is defined by a six-tuple consisting of

1. a finite set of states Q,

2. a start state s 2 Q,

3. a semiring .K;˚;˝; N0; N1/,

4. a final weight function ! � Q �K,

5. an alphabet †, and

6. a transition relation ı � Q � .† [f�g/ �K �Q.

Three modifications have been made with respect to the earlier definition of FSAs in subsec-
tion 1.3.1 above. First, WFSAs are defined with respect to a particular semiring. Second, in
place of the finite state set F there is a function ! which gives the final weight for each state.
By convention, this is assumed to be a total function and a state q 2 Q is said to be non-final if
!.q/ D N0.9 Third, the transition relation ı has been extended to include weights. A path through
a weighted finite acceptor is a triple of

1. a state sequence q1; q2; : : : ; qn 2 Qn,

2. a string z1; z2; : : : ; zn 2 .† [f�g/n, and

3. a weight sequence k1; k2; : : : ; kn 2 Kn

subject to the constraint that 8i 2 Œ1; n� W .qi ; zi ; ki ; qiC1/ 2 ı. This constraint holds that there
exists an arc from qi to qiC1 that has the label zi and weight ki . A path is complete if

9 Alternatively, one could define ! as a partial function in which !Œq� # if and only if state q is final.

1.6. WEIGHTEDTRANSDUCERSANDRELATIONS 13

0
a/1

a/1

c/2

b/3

1/2

c/2

3/4

2/3

Figure 1.5: Weighted finite acceptor over the language fagC.fbg [fcg�/.

1. .s; z1; k1; q1/ 2 ı and

2. !Œqn� ¤ N0.

That is, a complete path must also begin with an arc from the initial state s to q1 with label z1

and weight k1 and halt in a final state, i.e., a state with a non-N0 final weight. Once again ignoring
�-labels, a WFSA accepts a string z 2 †� with weight

nO
iD1

ki

!
˝ !Œqn� D k1 ˝ k2 ˝ : : :˝ kn ˝ !Œqn�;

if there exists a complete path with string z and weight sequence k1; k2; : : : ; kn. Note that the
pathweight, the weight associated with a path, is given by the˝-product of the weight sequence
and the final weight of the final state in the path.

An example WFSA is shown in Figure 1.5; weights are separated from arc and/or state
labels by a forward slash. This WFSA accepts the string aacc, for example, with weight 1˝ 1˝

2˝ 2˝ 4, equal to 10 in the log and tropical semirings.

1.5.3 WEIGHTEDREGULARLANGUAGES
There are two roughly equivalent ways to define the weighted regular languages expressed by
weighted finite acceptors. Under one definition, a weighted language is a partial relation over
†� �K; that is, it assigns weights to those strings in its language. However, one can alternatively
define weighted languages as a total relation with N0 used as the weight for strings not accepted
under the previous definition. This eliminates the distinction between those strings not accepted
by the language and those accepted with weight N0.

1.6 WEIGHTEDTRANSDUCERSANDRELATIONS
Finite transducers and relations can also be extended to support weights.

14 1. FINITE-STATEMACHINES

1.6.1 WEIGHTEDFINITETRANSDUCERS
The definition of a weighted finite-state transducer (WFST) should be obvious from the pre-
ceding discussion, but is provided for completeness. A WFST is a seven-tuple consisting of

1. a finite set of states Q,

2. a start state s 2 Q,

3. a semiring .K;˚;˝; N0; N1/,

4. a final weight function ! � Q �K,

5. an input alphabet †,

6. an output alphabet ˆ, and

7. a transition relation ı � Q � .† [f�g/ � .ˆ [f�g/ �K �Q.

Paths through a WFST are then four-tuples consisting of

1. a state sequence q1; q2; : : : qn 2 Qn,

2. a input string x1; x2; : : : ; xn 2 .† [f�g/n,

3. a output string y1; y2; : : : ; yn 2 .ˆ [f�g/n, and

4. a weight sequence k1; k1; : : : ; kn 2 Kn

subject to the constraint that 8i 2 Œ1; n� W .q1; xi ; yi ; ki ; qiC1/ 2 ı. A complete path is a path
where

1. .s; x1; y1; k1; q1/ 2 ı and

2. !Œqn� ¤ N0.

That is, a complete path must also begin with a transition from the initial state s to q1 with
input label x1, output label y1, and weight k1, and halt in a final state. Once again, ignoring the
presence of �-labels in the input and output strings, a WFST transduces or maps from x 2 †�

to y 2 ˆ� with weight k 2 K so long as a complete path with path weight k, input string x, and
output string y exists.

1.6.2 WEIGHTEDRATIONALRELATIONS
Each WFST corresponds to a weighted rational relation, a three-way partial relation over
†� �ˆ� �K, but in practice, such relations are often reinterpreted as two-way partial rela-
tions over †� ! ˆ� �K; that is, for a given input string, they yield pairs of an output string
and an associated path weight. Weighted relations can alternatively be defined as total relations
similarly to the alternative definition of weighted languages given in subsection 1.5.3.

1.6. WEIGHTEDTRANSDUCERSANDRELATIONS 15

FURTHERREADING
Partee et al. (1993: ch. 1–3) give a gentle introduction to sets, pairs, relations, functions, and
strings.

Hopcroft et al. (2008: ch. 2) formalizes finite acceptors, though they eschew both trans-
ducers and weights.

Comparable formalizations of WFSTs are given by Roark and Sproat (2007: ch. 1)
and Mohri (2009).

Hopcroft et al. (2008: ch. 3) formalize connections between finite acceptors, regular lan-
guages, and regular expressions. Jurafsky and Martin (2009: ch. 2) and Eisenstein (2019: ch. 9)
briefly discuss these connections.

Hopcroft et al. (2008: ch. 5–7) and Allauzen and Riley (2012) present an extension of
finite automata known as pushdownautomata, corresponding to the family of formal languages
known as context-free grammars (Chomsky 1963).

17

C H A P T E R 2

ThePynini Library
This chapter illustrates finite-state text processing using Pynini (Gorman 2016), an open-source
Python library for finite-state text processing. Pynini is one of the two major libraries used for
finite-state grammar development at Google. It marries efficient implementations of a wide va-
riety of WFST algorithms with the convenience of the Python programming language. Pynini
has seen wide adoption since its release; for example, it has been used to build text normal-
ization grammars (Gorman and Sproat 2016, Ritchie et al. 2019) and grapheme-to-phoneme
conversion models (Gorman et al. 2020, Lee et al. 2020) for dozens of languages.

The next section describes the basic design architecture of Pynini and related libraries.
Readers less interested in these details are welcome to skip to section 2.2, which describes con-
ventions used by Pynini. A basic familiarity with the Python language is assumed; readers who
lack this familiarity should first consult one of the many textbooks on the subject.

2.1 DESIGN
Pynini, like several other finite-state toolkits, builds upon OpenFst (Allauzen et al. 2007), an
open-source C++ library also developed at Google. The OpenFst library is an efficient, fast,
and comprehensive general-purpose framework for WFST applications, and it has been used at
Google and elsewhere to develop automatic speech recognizers, text-to-speech synthesizers,
and inputmethod engines (i.e., text entry systems for mobile devices), including those bundled
with Android devices. At the lowest level, OpenFst provides classes—representing WFSTs—
and functions—representing algorithms over WFSTs—templated on the semiring of the input
FST(s). For instance, the following snippet contains a C++ template function which compiles
an FSA from a string, placing each byte (i.e., char) on its own arc.
template <class Arc>
void CompileString(const std::string &s,

fst::VectorFst<Arc> *fst) {
fst->DeleteStates();
fst->AddStates(s.size() + 1);
typename Arc::StateId state = 0;
fst->SetStart(state);
for (const char c : s) {
fst->AddArc(state, Arc(c, c, state + 1));
++state;

18 2. THEPYNINI LIBRARY
}
fst->SetFinal(state);

}

In addition to templated functions and classes, OpenFst provides a second layer known as the
scripting API.This layer does away with the template arguments using virtual dispatch for meth-
ods and a registration mechanism for functions. This allows the user to abstract away from the
choice of semiring—at least for a set of pre-registered semirings—but is otherwise just as ver-
bose as the lower layer. A Python extension module, pywrapfst, included with OpenFst, wraps
the scripting API. This additional layer eliminates the need for compilation since Python is in-
terpreted. Ignoring differences in syntax and naming conventions, a similar string compilation
function, shown below, closely resembles the C++ version given above.1

def compile_string(s: bytes) -> pywrapfst.VectorFst:
fst = pywrapfst.VectorFst()
fst.add_states(len(s) + 1)
state = 0
fst.set_start(state)
for c in s:

fst.add_arc(state, pywrapfst.Arc(c, c, None, state + 1))
state += 1

fst.set_final(state)
return fst

Pynini, a Python extension module, greatly simplifies many of the drudgeries of finite-
state development. It includes several algorithms not included in OpenFst, including methods
for converting between automata and strings (section 2.3), range concatenation (section 3.3)
and cross-product (section 3.7) operators, general-purpose optimization routines (section 4.1),
and context-dependent rewrite rule compilation (section 5.2), all key tools for finite-state
grammar development. The built-in operations provided by Pynini largely eliminate the above
snippets’ low-level manipulation of a WFSTs’ states and arcs in favor of high-level operators
like composition, union, and so on.

2.2 CONVENTIONS
FSAs and FSTs can be thought of as subsets ofWFSAs andWFSTs, respectively, whose weights
are limited to fN0; N1g. By the same token, FSAs can be thought of as subsets of FSTs for which
all transitions have the same input and output labels. Therefore, Pynini follows the practices of
OpenFst, in using a single Fst type, a weighted transducer, for all four types of finite automata

1 Throughout, Python functions are annotated with the optional type hints introduced in Python 3.5. Those unfamiliar
or uncomfortable with these annotations are welcome to ignore them.

2.2. CONVENTIONS 19
discussed in chapter 1. Thus, a weighted FSA is merely a WFST for which all input and output
labels happen to match, and similarly, an unweighted transducer is one which only uses the
“free” weight N1 and/or the “infinite” weight N0.

2.2.1 COPYING
The Fst class uses copy-on-write semantics, meaning that the copymethod is constant time and
only produce deep copies if one of the copies is later mutated. The same is true for SymbolTable
objects discussed below.

2.2.2 LABELS
Arc input and output labels are represented by non-negative integers, with � represented by label
0. One may use symbol tables to map between integer labels and strings for display, debugging,
and string conversion (see section 2.3) but symbol tables are otherwise ignored. Negative-valued
labels, while permitted, are reserved for implementation and should generally be avoided.

2.2.3 STATES
States are represented by dense sequences of integers—state IDs—ranging from 0 to jQj � 1.
As formalized in subsection 1.3.1, at most one state may be designated as the start state. An
empty FST—one with no states—uses the constant pynini.NO_STATE_ID (equal to �1) as its
start state. Thus, the following snippet asserts that an FST f is non-empty.

assert f.start() != pynini.NO_STATE_ID

Each state is associated with a final weight; non-final states have an infinite final weight N0 and
final states have a non-N0 weight. Thus, the following snippet asserts that state q in an FST f is
non-final.

assert f.final(q) == pynini.Weight.zero(f.weight_type())

2.2.4 ITERATION
Pynini does not provide random access to states and arcs; they must be accessed using special-
ized iterators. These iterators are invalidated—i.e., are no longer safe to use—in the following
scenarios.

1. An ArcIterator is invalidated if any arcs leaving that state are mutated.

2. A MutableArcIterator is invalidated if arcs leaving any other state are mutated.

3. A StateIterator is invalidated if the number of states is changed.

20 2. THEPYNINI LIBRARY

2.2.5 WEIGHTS
Fst instances are associated with a given semiring and arc type. Pynini includes three built-in
arc types.2 The standard arc type, the default, gives the tropical semiring, with weights stored as
32-bit IEEE 754 floating-point numbers; it is commonly used to simulate the Boolean semiring.
The log arc type gives the log semiring, once again using 32-bit floats. Finally, the log64 arc type
also uses the log semiring but uses “double-precision” 64-bit floating-point numbers. Pynini’s
arcmap function can be used to convert between semirings. For instance, the following snippet
makes a deep copy of an FST f and converts it to the log semiring.

g = pynini.arcmap(f, map_type="to_log")

Finally, one can retrieve an Fst’s semiring using the arc_type and weight_type instance meth-
ods. For example, the following snippet asserts that f has the standard arc type and weights
over the associated tropical semiring.

assert f.arc_type() == "standard"
assert f.weight_type() == "tropical"

2.2.6 PROPERTIES
Each Fst instance bears a set of properties, assertions about the FST’s topology, weights, and
so on. Some properties are binary—either true or false—whereas others are ternary—they also
have an “unknown” value. Unknown property values are set when some operation invalidates the
value of a property, but recomputing the true value of this property would be computationally
expensive. Properties are stored in a single 64-bit unsigned integer, making them somewhat
challenging to directly access. Each named property is represented by a module-level constant, a
propertymask. Some property masks are the bitwise union of multiple sets of related properties,
and users can construct their own compound property masks using the bitwise OR operator |.
There are two ways to test whether some FST has a given set of properties, but in both cases one
passes the property mask to the instance method properties, and then compare the property
mask to the properties this method returns. The second argument to the propertiesmethod is a
boolean which specifies whether or not “unknown” properties are to be recomputed; depending
on the propertymask and the size of the FST, this recomputationmay ormay not be an expensive
operation. When this argument is True, this tests whether the FST in question actually has the
given property or properties; when it is False, it simply tests whether it is known to have the
given property or properties. Some examples are given below.

• Asserts that f is cyclic:

assert f.properties(pynini.CYCLIC, True) == pynini.CYCLIC

2 One can recompile Pynini with support for additional semirings but this requires considerable C++ knowledge.

2.3. STRINGCONVERSION 21
• Asserts that f is known to be cyclic:

assert f.properties(pynini.CYCLIC, False) == pynini.CYCLIC

• Asserts that f is an unweighted acceptor:

ua_props = pynini.ACCEPTOR | pynini.UNWEIGHTED
assert f.properties(ua_props, True) == ua_props

One can set FST properties using the set_properties method. The verify method tests
whether an FST’s properties are correct, as shown in the following snippet:

assert f.verify()

2.3 STRINGCONVERSION
Finite-state automata represent sets of strings, and relations between strings. Naturally, then,
finite-state grammar development requires one to convert strings into automata, or to extract
strings from automata.

2.3.1 TEXTENCODING
Imagine that one wishes to construct an automaton representing a single string. In a string or
chain automaton,

1. the start state s is labeled 0,

2. the highest-numbered state is final and has no outgoing arcs, and

3. every other state q is non-final and has one outgoing arc to state q C 1.

String FSTs, by construction, have exactly one path and one (output) string. It is relatively
straightforward to construct such an FST given a list of arc labels (and optionally, a final weight),
but how does one convert a string to a list of arc labels, or inversely, a list of arc labels to a string?

Modern digital computers represent characters using low-precision integers, and strings
as contiguous sequences of these integers.Character encodings define a bidirectional mappings
between these numeric sequences and human-readable strings. Conversion from strings to num-
ber sequences is referred to as encoding, and from number sequences to strings as decoding.
Character encodings predate digital computing by at least a century, having been used since the
earliest days of telegraphy, and have even earlier roots in the cryptographic methods of antiq-
uity. One of the most widely known character encodings is ASCII (the American Standard
Code for Information Interchange), first published in 1963. ASCII defines a set of 128 distinct
“characters”. These include

• 26 uppercase Latin letters,

22 2. THEPYNINI LIBRARY
• 26 lowercase Latin letters,

• 10 Arabic numerals,

• 33 punctuation characters,

• and 33 control characters.

The control characters are used for a variety of functions such as delimiting the start of a new line,
but some are obsolete telegraphy signals. The full ASCII table is shown in Table 2.1. Naturally,
ASCII is only sufficient for English text, and does not support diaeresis (e.g., Brontë, coöperate,
Häagen-Dazs, Motörhead, naïve) or other commonly used Latin-script diacritics.

ASCII is a 7-bit encoding scheme because it defines 128 (D 27) unique symbols. How-
ever, ASCII characters are usually stored in bytes, which have 256 (D 28) distinct values. This
extra bit is exploited by ISO/IEC 8859, an encoding standard published incrementally from
1987–2001. Each of the 16 encodings in this standard adds up to 128 additional characters to
ASCII. For example, the Part 1 encoding, sometimes called “Latin-1”, covers most of the Latin
scripts of Western Europe, although it lacks a handful of characters used in Catalan, Danish,
Dutch, Estonian, Finnish, French, German, Hungarian, and Welsh; a later revision, Part 15,
fills some of these gaps and adds the Euro sign €. Part 2 covers central European languages
that use the Latin alphabet. Other ISO/IEC 8859 encodings cover Hebrew, Greek, and various
European languages written in Cyrillic. However, the ISO/IEC 8859 encodings have several
major limitations. First, they only cover a tiny number of the alphabetic scripts in existence,
and with the exception of Thai, make no effort to cover the indigenous scripts of Asia. Second,
they provide no mechanism for specifying which of the 16 encodings was used for a given doc-
ument. It is often possible to guess or “sniff ” a document’s encoding (e.g., Li and Momoi 2001),
though such methods are necessarily heuristic. Finally, they provide no mechanism for mixing
or switching between scripts. Each ISO/IEC 8859 encoding is a superset of ASCII, so one can
mix English and Cyrillic using the Part 5 encoding, for example, but there is no way to combine
Cyrillic and French, or Greek and Hebrew, for example.

TheUnicodeConsortium, a non-profit organization incorporated in 1991, was founded to
address the deficiencies of earlier encoding standards. The consortium, working in concert with
tech companies and international standards organizations, has produced over a dozen versions of
their standard, Unicode. Unicode defines a universal character set of over one million distinct
codepoints. Roughly 140,000 of these codepoints are currently in use, covering 154 modern
and historical scripts at the time of writing. It also contains a huge number of non-linguistic
symbols including those used in linguistics, mathematics, and music, various geometric shapes
and arrows, and emoji. Because Unicode is designed for backward compatibility with many
earlier standards, there may be more than one Unicode representation for a given string. For
example, diacriticized Latin characters like é, can either be a character in its own right or an
e plus a combining acute diacritic. Similarly, in the Latin script used to write Serbo-Croatian,

2.3. STRINGCONVERSION 23

Table 2.1: The ASCII encoding; control characters are indicated by angle brackets.

 0 <NUL> 32 64 @ 96 `

 1 <SOH> 33 ! 65 A 97 a

 2 <STX> 34 " 66 B 98 b

 3 <ETX> 35 # 67 C 99 c

 4 <EQT> 36 $ 68 D 100 d

 5 <ENQ> 37 % 69 E 101 e

 6 <ACK> 38 & 70 F 102 f

 7 <BEL> 39 ' 71 G 103 g

 8 <BS> 40 (72 H 104 h

 9 <TAB> 41) 73 I 105 i

10 <LF> 42 * 74 J 106 j

11 <VT> 43 + 75 K 107 k

12 <FF> 44 , 76 L 108 l

13 <CR> 45 - 77 M 109 m

14 <SO> 46 . 78 N 110 n

15 <SI> 47 / 79 O 111 o

16 <DLE> 48 0 80 P 112 p

17 <DC1> 49 1 81 Q 113 q

18 <DC2> 50 2 82 R 114 r

19 <DC3> 51 3 83 S 115 s

20 <DC4> 52 4 84 T 116 t

21 <NAK> 53 5 85 U 117 u

22 <SYN> 54 6 86 V 118 v

23 <ETB> 55 7 87 W 119 w

24 <CAN> 56 8 88 X 120 x

25 57 9 89 Y 121 y

26 <SUB> 58 : 90 Z 122 z

27 <ESC> 59 ; 91 [123 {

28 <FS> 60 < 92 \ 124 |

29 <GS> 61 = 93] 125 }

30 <RS> 62 > 94 ^ 126 ~

31 <US> 63 ? 95 _ 127

24 2. THEPYNINI LIBRARY
digraphs such as dž, lj, and nj are sometimes considered single characters, and in Korean, each
hangul glyph represents a full syllable but can also be represented by their constituent jamo, each
roughly a phoneme. In all three cases, Unicode supports both “composed” and “decomposed”
representations of the above characters. For instance, é can be represented as a single codepoint
(U+00E9) or as e (U+0065) followed by a combining acute accent (U+00E9). In Python, one
can convert between various Unicode normalization forms using the normalize function from
the built-in unicodedata module.3

Unicode defines several encodings for its character set. One, UTF-32, uses four bytes to
represent all Unicode characters. However, this is massively inefficient, particularly for texts that
consist primarily of Latin characters, andmotivates an alternative encoding known asUTF-8. In
this encoding, each character is encoded by one to four bytes, depending on the script. UTF-8 is
backward-compatible with ASCII, in the sense that ASCII characters have the same encoding
in both systems. Most non-ASCII Latin characters and characters from alphabets—Armenian,
Greek, Cyrillic, etc.—require two bytes. Most of the remaining characters are encoded with
three bytes; only rare East Asian characters, mathematical symbols, and historical scripts re-
quire four bytes to encode. At time of writing, UTF-8 is the most commonly used encoding,
accounting for upward of 95% of all web pages at time of writing, and is the default encoding
for most modern computers.

2.3.2 STRINGCOMPILATION
In Python 3, the str type represents a sequence of Unicode codepoints.4 Pynini’s accep function
is used to compile a single Python str into a string Fst, an acyclic acceptor (in the sense of
subsection 1.3.1) with a single final state and a single arc leaving each non-final state. It takes
an input string argument and parses it according to the specified token_type, i.e., string parsing
mode. Pynini provides three such modes. In all three modes, one can optionally specify the arc
type (using the arc_type argument; this defaults to "standard", i.e., the tropical semiring) or
the final weight for the string (using the weight argument; this defaults to N1 in the appropriate
semiring).

In byte mode, the default mode, the string is encoded as a UTF-8 string and each arc
contains a single byte. In utf8 mode, however, each arc contains a single Unicode codepoint
(here specified in decimal).5 The two modes are illustrated in Figure 2.1, which shows FSAs
encoding a Unicode string in both byte and utf8 mode. Note that since UTF-8 is a superset
of ASCII, there is no distinction between byte and utf8 modes for strings composed solely of
ASCII characters.

Both byte and utf8 modes use special conventions for interpreting the ASCII square
bracket characters [and]. In the most common case, any string surrounded by [on its left

3 https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize
4 This is a departure from Python 2, in which str is a bytestring.
5 The somewhat unintuitive name for this mode comes from the use of UTF-8 as an intermediate encoding.

https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize

2.3. STRINGCONVERSION 25

0
77 195 188 116 116 101 114

1 2 3 4 5 6 7

0
77 252 116 116 101 114

1 2 3 4 5 6

Figure 2.1: The German word Mütter ‘mothers’ compiled into a string in byte (above) and utf8
(below) modes. In bytemode, ü is encoded using two arcs (labeled 195 and 188, the decimal rep-
resentation of its UTF-8 encoding), but in utf8mode only one (252, the decimal representation
of its Unicode codepoint) is needed.

and] on its right is taken to be an decimal or hexidecimal integer and is processed by the C
standard library function stroll. If this routine succeeds, the integer is used as an arc label and
the enclosing square brackets are subsequentially ignored. For example, in both byte and utf8
modes, strings abc, [97][98][99], and [0x61][0x62][0x63] all give rise to the label sequence
Œ97; 98; 99�. To prevent [and] from being interpreted as a delimiter for bracketed spans, rather
than a literal character, one can “escape” them by adding a preceding backslash, and escaping
can be automated using Pynini’s escape function. The complete bracket parsing procedure is
described in Appendix B.

The third mode, symbol table mode, is triggered by providing a SymbolTable, a bidirec-
tional hash table mapping between strings and integers, as the token_type argument. In this
mode, the string is assumed to consist of substrings separated by a space character, and each
substring is assumed to be assigned to an integer label by the provided symbol table. Sample
snippets are given below.

• Compiles string s in byte mode:

f = pynini.accep(s)

• Compiles string s in UTF-8 mode with final weight 2:

f = pynini.accep(s, token_type="utf8", weight=2)

• Compiles string s in symbol table mode using symbol table sym:

f = pynini.accep(s, token_type=sym)

Whenever possible, Pynini functions and methods that expect FST arguments will im-
plicitly cast str instances to Fst by calling the accep function on the input string. This allows
one to, for example, construct an FSA representing the union of a set of strings by passing string
arguments to the union function (section 3.4) without explicitly compiling those strings first.

