

REFERENCES

Bringmann A, Faude F, Reichenbach A. Mammalian retinal glial (Müller) cells express large-conductance Ca^{2+}-activated K^+ channels that are modulated by Mg^{2+} and pH, and activated by protein kinase A. *Glia* 19:311–323 (1997).

REFERENCES

Calaza KC, de Mello FG, Gardino PF. GABA release induced by aspartate-mediated activation of NMDA receptors is modulated by dopamine in a selective subpopulation of amacrine cells. *J Neurocytol* 301:81–93 (2001).

REFERENCES

Chen ST, Chuang JI, Cheng CL, Hsu LJ, Chang NS. Light-induced retinal damage involves tyrosine 33 phosphorylation, mitochondrial and nuclear translocation of WW domain-containing

Dmitriev AV, Bykov KA, Skachkov SN. Slow P III component of the electroretinogram resulting from the interaction of photoreceptors and cells of Müller in the retina. *Fiziol Zh SSSR Im I M Sechenova* 71:446–452 (1985).

Eberhardt C, Amann B, Feuchtiger A, Hauck SM, Deeg CA. Differential expression of inwardly rectifying K⁺ channels and aquaporins 4 and 5 in autoimmune uveitis indicates misbalance in

REFERENCES

Fischer AJ, Omar G. Transitin, a nestin-related intermediate filament, is expressed by neural progenitors and can be induced in Müller glia in the chicken retina. *J Comp Neurol* 484:1–14 (2005).

Hertz L, Peng L, Westergaard N, Yudkoff M, Schousboe A. Neuronal-astrocyte interactions in metabolism of transmitter amino acids of the glutamate family. In: Schousboe A, Diemer NH,

REFERENCES

Kalisch F, Wurm A, Iandiev I, Uckermann O, Dilsiz N, Reichenbach A, Wiedemann P, Bringmann A. Atrial natriuretic peptide inhibits osmotical glial cell swelling in the ischemic rat

Keirstead SA, Miller RF. Calcium waves in dissociated retinal glial (Müller) cells are evoked by release of calcium from intracellular stores. *Glia* 14:14–22 (1995).

Labin AM, Safuri SK, Ribak EN, Perlman I. Müller cells separate between wavelengths to improve day vision with minimal effect upon night vision. *Nat Commun* 5:4319 (2014). doi: 10.1038/ncomms5319

Luna JD, Caribaux LJ, Reviglio VE, Ceschín D, Landa CA, Juarez CP, Chiabrando GA, Sanchez MC. Differential protein expression of LRP and receptor-associated ligands in neovascular rat

Macnab LT, Pow DV. Central nervous system expression of the exon 9 skipping form of the glutamate transporter GLAST. *Neuroreport* 18:741–745 (2007). doi: 10.1097/WNR.0b013e3280c143b0

Malchow RP, Qian HH, Ripps H. γ-Aminobutyric acid (GABA)-induced currents of skate Müller (glial) cells are mediated by neuronal-like GABA_A receptors. *Proc Natl Acad Sci USA* 86: 4226–4230 (1989). doi: 10.1073/pnas.86.11.4326

Namekata K, Harada C, Guo X, Kikushima K, Kimura A, Fuse N, Mitamura Y, Kohyama K, Matsumoto Y, Tanaka K, Harada T. Interleukin-1 attenuates normal tension glaucoma-like re-

Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallén A, Perlmann T, Lendahl U, Betsholtz C, Berthold CH, Frisén J. Abnormal reaction to central nervous system injury in mice lack-

Pow DV, Robinson SR. Glutamate in some retinal neurons is derived solely from glia. *Neuroscience* 60:355–366 (1994).

Reichenbach A. Attempt to classify glial cells by means of their process specialization using the rabbit retinal Müller cell as an example of cyttopotopographic specialization of glial cells. *Glia* 2: 250–259 (1989).

Roberge FG, Caspi RR, Nussenblatt RB. Glial retinal Müller cells produce IL-1 activity and have a dual effect on autoimmune T helper lymphocytes. *J Immunol* 140:2193–2196 (1988).

Ryskamp DA, Witkovsky P, Barabas P, Huang W, Koehler C, Akimov NP, Lee SH, Chauhan S, Xing W, Rentería RC, Liedtke W, Krizaj D. The polymodal ion channel transient receptor po-

Seo MS, Okamoto N, Vinores MA, Vinores SA, Hackett SF, Yamada H, Yamada E, Derevjanik NL, LaRochelle W, Zack DJ, Campochiaro PA. Photoreceptor-specific expression of plate-

Umapathy NS, Li W, Mysona BA, Smith SB, Ganapathy V. Expression and function of glutamine transporters SN1 (SNAT3) and SN2 (SNAT5) in retinal Müller cells. *Invest Ophthalmol Vis Sci* 46:3980–3987 (2005). doi: 10.1167/iovs.05-0488

Umapathy NS, Gnan-Prakasam JP, Martin PM, Mysona B, Dun Y, Smith SB, Ganapathy V, Prasad PD. Cloning and functional characterization of the proton-coupled electrogenic folate

Vandenbranden CA, Yazulla S, Studholme KM, Kamphuis W, Kamermans M. Immunocytochemical localization of the glutamate transporter GLT-1 in goldfish (Carassius auratus) retina.

Vinores SA, Youssri AI, Luna JD, Chen YS, Bhargave S, Vinores MA, Schoenfeld CL, Peng B, Chan CC, LaRochelle W, Green WR, Campochiaro PA. Upregulation of vascular endothelial

Wilkinson-Berka JL, Heine R, Tan G, Cooper ME, Hatzopoulos KM, Fletcher EL, Binger KJ, Campbell DJ, Miller AG. RILLKKMPSV influences the vasculature, neurons and glia, and

Xu Y, Ola MS, Berkich DA, Gardner TW, Barber AJ, Palmieri F, Hutson SM, LaNoue KF. Energy sources for glutamate neurotransmission in the retina: absence of the aspartate/glutamate carrier

REFERENCES

Yazulla S, Studholme KM. Co-localization of Shaker A-type K+ channel (Kv1.4) and AMPA-glutamate receptor (GluR4) immunoreactivities to dendrites of OFF-bipolar cells of goldfish retina. J Neurocytol 28:63–73 (1999).

REFERENCES

Andreas Reichenbach, Dr. med. habil., started his career as a physiologist. Since 1994 he has been Professor for Neurophysiology and Head of the Department of Pathophysiology of Neuroglia at the Paul Flechsig Institute of Brain Research, Universität Leipzig, Germany. His main fields of research are the development, structure, function, and pathophysiology of the vertebrate retina, and the contribution of neuroglial cells to the functioning and dysfunctions of the retina and brain. In particular, he and his colleagues contributed a great deal to the present knowledge about Müller (radial glial) cells of the mammalian retina. For instance, his group detected that Müller cells guide light to the photoreceptor cells in the inverted vertebrate retina. He has published a total of 400 scientific peer-reviewed papers, reviews, book chapters, and books.

Andreas Bringmann After studying biology, Dr. Andreas Bringmann worked in the field of systemic neurophysiology until he was inspired in 1996 by Andreas Reichenbach to research the most interesting cell, the Müller cell. Since 2002 he has been in the Department of Ophthalmology and Eye Hospital of the University of Leipzig where he is the head of the Basic Research Laboratory.