
The Essentials of Modern Software Engineering
Free the Practices from the Method Prisons!

by Ivar Jacobson, Harold “Bud” Lawson, Pan-Wei Ng, Paul E. McMahon, and Michael Goedicke

Table of Contents

Abstract

Foreword by Ian Sommerville

Foreword by Grady Booch

Preface

Part 1 – The Essence of Software Engineering

1 From Programming to Software Engineering

1.1 Beginning with Programming

1.2 Programming is Not Software Engineering

1.3 From Internship to Industry

1.4 Journey into the Software Engineering Profession

2 Software Engineering Methods and Practices

2.1 Software Engineering Challenges

2.2 The Rise of Software Engineering Methods and Practices

2.2.1 There are Lifecycles

2.2.2 There are Technical Practices

2.2.3 There are People Practices

2.2.4 Consequences

2.3 The SEMAT Initiative

2.4 Essence: The OMG Standard

3 Essence in a Nutshell

3.1 The Ideas

3.2 Methods are Compositions of Practices

3.3 There is a Common Ground

3.4 Focus on the Essentials

3.5 Provide an Engaging User Experience

4 Identifying the Key Elements of Software Engineering

4.1 Getting to the Basics

4.2 Software Engineering is About Delivering Value to Customers

4.2.1 Opportunity

4.2.2 Stakeholders

4.3 Software Engineering Delivers Value Through a Solution

4.3.1 Requirements

4.3.2 Software System

4.4 Software Engineering is Also About Endeavors

4.4.1 Team

4.4.2 Work

4.4.3 Way of Working

5 The Language of Software Engineering

5.1 A Simple Practice Example

5.2 The Things to Work With

5.2.1 Alphas

5.2.2 Alpha States

5.2.3 Work Products

5.3 Competencies

5.4 Things to Do

5.4.1 Activities

5.5 Essentializing Practices

6 The Kernel of Software Engineering

6.1 Organizing Essence Kernel

6.2 The Essential Things to Work With: The Alphas

6.3 The Essential Things to Do: The Activities

6.4 Competencies

6.5 Patterns

6.5.1 Roles

6.5.2 The Checkpoint Pattern

7 Key Principles: Practical, Actionable, and Extensible

7.1 The Big Idea

7.2 Essence is Practical

7.3 Essence is Actionable

7.4 The Kernel is Extensible

7.5 How Does the Kernel Relate to Agile and Other Existing Approaches?

7.6 How Essence Will Help You

8 Reflection on Theory

8.1 Where’s the Theory for Software Engineering?

8.1.1 What is Software Engineering Theory?

8.1.2 Three Arguments

8.2 Uses of Theory

8.3 The Essence is a General, Descriptive Theory of Software Engineering

8.4 Towards a General Predictive Theory of Software Engineering

8.5 A Theoretical Foundation Helps You Grow

Part 2 – Developing Software with Essence

9 Applying Essence in the Small – Playing Serious Games

9.1 Progress Poker

9.1.1 Benefits of Progress Poker

9.1.2 Example of Travel Essence Team Playing Progress Poker

9.2 Chasing the State

9.3 Objective Go

9.4 Checkpoint Construction

9.5 Reflection

10 Kick Starting Development Using Essence

10.1 Understand the Context Through the Lens of Essence

10.2 Agreeing on the Development Scope and Checkpoints

10.3 Agreeing on the Most Important Things to Watch

11 Developing with Essence

11.1 Planning with Essence

11.2 Doing and Checking with Essence

11.3 Adapting a Team’s Way of Working with Essence

11.4 How the Kernel Helps You in Adapting the Way of Working

11.4.1 Helping a Team Reason About Their Way of Working

11.4.2 Making Changes to the Way of Working

12 The Development Journey

12.1 Visualizing the Journey

12.2 Ensuring Progress and Health

12.3 Dealing with Anomalies

13 Reflection on Kernel

13.1 Validity of the Kernel

13.2 Applying the Kernel Effectively

Part 3 – Small Scale Development with Practices

14 Kick Starting Development with Practices

14.1 Understand the Context Through the Lens of Essence

14.2 Agree Upon Development Scope and Checkpoints

14.3 Agree upon Practices to Apply

14.4 Agree upon the Important Things to Watch

14.5 Journey in Brief

15 Running with Scrum

15.1 Scrum Explained

15.2 Practices Make a Software Engineering Approach Explicit and Modular

15.3 Making Scrum Explicit Using Essence

15.4 Elements of the Scrum Lite Practice

15.4.1 Scrum Lite Alphas

15.5 Scrum Lite Work Products

15.5.1 Product Backlog

15.5.2 Sprint Backlog

15.5.3 Increment

15.6 Scrum Lite Roles

15.7 Kick Starting Scrum Lite Usage

15.8 Working with Scrum Lite

15.8.1 Sprint Planning

15.8.2 Daily Scrum

15.8.3 Sprint Review

15.8.4 Sprint Retrospective

15.9 Reflecting on the Use of Scrum with Essence

15.9.1 Adding Explicit Practices

15.9.2 Visualizing the Impact of the Scrum Lite Practice

15.9.3 Value of Being Precise

16 Running with User Story Lite

16.1 User Stories Explained

16.2 Making the User Story Lite Practice Explicit Using Essence

16.3 User Story Lite

16.4 User Story Lite alphas

16.4.1 User Story

16.5 User Story Lite Work Products

16.5.1 Story Card

16.5.2 Test Case

16.6 Kick Starting User Story Lite Usage

16.7 Working with User Story Practice

16.7.1 Find User Stories

16.7.2 Prepare a User Story

16.7.3 Applying the Splitting User Stories Pattern

16.7.4 Accept a Story

16.8 The Value of the Kernel to the User Story Practice

16.8.1 Visualizing the Impact of the User Story Practice

17 Running with Use-Case Lite

17.1 Use Cases Explained

17.1.1 Use-Case Lite

17.2 Making the Use-Case Lite Practice Explicit Using Essence

17.3 Use Case Lite Alphas

17.3.1 Progressing Use Cases

17.3.2 Progressing Use Case Slices

17.4 Use Case Lite Work Products

17.4.1 Use-Case Model

17.4.2 Use Case Narrative

17.4.3 Use-Case Slice Test Case

17.5 Kick Starting Use Cases to Solve a Problem Our Team is Facing

17.5.1 Find Actors and Use Cases

17.6 Working with Use Cases and Use-Case Slices

17.6.1 Slice the Use Cases

17.6.2 Prepare a Use Case Slice

17.6.3 Test a Use Case Slice

17.7 Visualizing the Impact of Using Use Cases for the Team

17.8 Progress and Health of Use Case Slices

18 Running with Microservices

18.1 Microservices Explained

18.2 Making the Microservice Practice Explicit Using Essence

18.3 Microservices Lite

18.4 Microservices Lite alpchas

18.5 Microservices Lite Work Products

18.5.1 A Brief UML Primer

18.5.2 Design Model

18.5.3 Microservice Design

18.5.4 Build and Deployment Script

18.5.5 Microservice Test Case

18.6 Microservices Lite Activities

18.6.1 Identify Microservices

18.6.2 Make Evolvable

18.6.3 Evolve Microservices

18.7 Visualizing the Impact of Microservice Practice to the Team

18.8 Progress and Health of Microservice Development

19 Putting the Practices Together: Composition

19.1 What is Composition

19.2 Reflecting on the Use of Essentialized Practices

19.3 Powering Practices Through Essentialization

Part 4 – Large Scale Complex Development

20 What it Means to Scale

20.1 The Journey Continued

20.2 The Three Dimensions of Scaling

21 Essentializing Practices

21.1 Practice Sources

21.2 Monolithic Methods and Fragmented Practices

21.3 Essentializing Practices

21.4 Establishing a Reusable Practice Architecture

21.4.1 Development Practices

21.4.2 Program Practices

22 Scaling Up to Large and Complex Development

22.1 Large Scale Methods

22.2 Large Scale Development

22.3 Kick-Starting Large-Scale Development

22.3.1 Understanding the Context Through the Lens of Essence

22.3.2 Agree on Development Scope and Checkpoints

22.3.3 Agree on Practices to Apply

22.3.4 Agree on the Important Things to Watch

22.3.5 Agreeing What to Develop

22.3.6 Managing the Work

22.3.7 Working Iteratively

22.3.8 Continual Improvement

22.4 Value of Essence to Large Scale Development

23 Reaching Out to Different Kinds of Development

23.1 From A Practice Architecture to a Method Architecture

23.2 Establishing a Practice Library Within an Organization

24 Being Agile with Practices and Methods

24.1 Agile Manifesto

24.2 Agile Working with Methods

24.3 The Full Team Owns Their Method

24.4 Focus on Method Use

24.5 Evolve Your Team’s Method

25 Reflecting on the SEMAT Journey

APPENDIX: A Brief History of Software and Software Engineering

