
CProgramming and
Numerical Analysis
An Introduction

Synthesis Lectures on
Mechanical Engineering

Synthesis Lectures on Mechanical Engineering series publishes 60–150 page publications
pertaining to this diverse discipline of mechanical engineering. The series presents Lectures
written for an audience of researchers, industry engineers, undergraduate and graduate
students.
Additional Synthesis series will be developed covering key areas within mechanical
engineering.

C Programming and Numerical Analysis: An Introduction
Seiichi Nomura
2018

Mathematical Magnetohydrodynamics
Nikolas Xiros
2018

Design Engineering Journey
Ramana M. Pidaparti
2018

Introduction to Kinematics and Dynamics of Machinery
Cho W. S. To
2017

Microcontroller Education: Do it Yourself, Reinvent the Wheel, Code to Learn
Dimosthenis E. Bolanakis
2017

Solving Practical Engineering Mechanics Problems: Statics
Sayavur I. Bakhtiyarov
2017

Unmanned Aircraft Design: A Review of Fundamentals
Mohammad Sadraey
2017

iii

Introduction to Refrigeration and Air Conditioning Systems: Theory and Applications
Allan Kirkpatrick
2017

Resistance Spot Welding: Fundamentals and Applications for the Automotive Industry
Menachem Kimchi and David H. Phillips
2017

MEMS Barometers Toward Vertical Position Detecton: Background Theory, System
Prototyping, and Measurement Analysis
Dimosthenis E. Bolanakis
2017

Engineering Finite Element Analysis
Ramana M. Pidaparti
2017

Copyright © 2018 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by anymeans—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

C Programming and Numerical Analysis: An Introduction

Seiichi Nomura

www.morganclaypool.com

ISBN: 9781681733111 paperback
ISBN: 9781681733128 ebook
ISBN: 9781681733135 hardcover

DOI 10.2200/S00835ED1V01Y201802MEC013

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ONMECHANICAL ENGINEERING

Lecture #13
Series ISSN
Print 2573-3168 Electronic 2573-3176

www.morganclaypool.com

CProgramming and
Numerical Analysis
An Introduction

Seiichi Nomura
The University of Texas at Arlington

SYNTHESIS LECTURES ONMECHANICAL ENGINEERING #13

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
This book is aimed at those in engineering/scientific fields who have never learned programming
before but are eager to master the C language quickly so as to immediately apply it to problem
solving in numerical analysis. The book skips unnecessary formality but explains all the impor-
tant aspects of C essential for numerical analysis. Topics covered in numerical analysis include
single and simultaneous equations, differential equations, numerical integration, and simula-
tions by random numbers. In the Appendices, quick tutorials for gnuplot, Octave/MATLAB,
and FORTRAN for C users are provided.

KEYWORDS
C, numerical analysis, Unix, gcc, differential equations, simultaneous equations,
Octave/MATLAB, FORTRAN, gnuplot

vii

Contents
Preface . xi

Acknowledgments . xiii

PART I Introduction to C Programming 1

1 First Steps to Run a C Program . 5
1.1 A Cycle of C Programming . 5
1.2 UNIX Command Primer . 8
1.3 Overview of C Programming . 10

1.3.1 Principles of C language . 10
1.3.2 Skeleton C program . 11

1.4 Exercises . 14

2 Components of C Language . 17
2.1 Variables and Data Types . 17

2.1.1 Cast Operators . 18
2.1.2 Examples of Data Type . 19

2.2 Input/Output . 20
2.3 Operators between Variables . 22

2.3.1 Relational Operators . 23
2.3.2 Logical Operators . 23
2.3.3 Increment/Decrement/Substitution Operators 24
2.3.4 Exercises . 25

2.4 Control Statements . 25
2.4.1 if Statement . 26
2.4.2 for Statement . 27
2.4.3 while Statement . 31
2.4.4 do while Statement . 32
2.4.5 switch Statement . 33

viii
2.4.6 Miscellaneous Remarks . 34
2.4.7 Exercises . 38

2.5 Functions . 39
2.5.1 Definition of Functions in C . 39
2.5.2 Locality of Variables within a Function . 41
2.5.3 Recursivity of Functions . 42
2.5.4 Random Numbers, rand() . 44
2.5.5 Exercises . 50

2.6 Arrays . 52
2.6.1 Definition of Arrays . 52
2.6.2 Multi-dimensional Arrays . 54
2.6.3 Examples . 55
2.6.4 Exercises . 58

2.7 File Handling . 60
2.7.1 I/O Redirection (Standard Input/Output Redirection) 60
2.7.2 File Handling (From within a Program) . 61

2.8 Pointers . 63
2.8.1 Address Operator & and Dereferencing Operator * 63
2.8.2 Properties of Pointers . 65
2.8.3 Function Arguments and Pointers . 68
2.8.4 Pointers and Arrays . 70
2.8.5 Function Pointers . 72
2.8.6 Summary . 73
2.8.7 Exercises . 74

2.9 String Manipulation . 75
2.9.1 How to Handle a String of Characters (Text) 75
2.9.2 String Copy/Compare/Length . 78

2.10 Command Line Arguments . 80
2.10.1 Entering Command Line Arguments . 80
2.10.2 Exercises . 82

2.11 Structures . 83
2.11.1 Mixture of Different Types of Variables . 83
2.11.2 Exercises . 86

ix

PART II Numerical Analysis . 89

3 Note onNumerical Errors . 93

4 Roots of f .x/ D 0 . 99
4.1 Bisection Method . 99
4.2 Newton’s Method . 102

4.2.1 Newton’s Method for a Single Equation . 102
4.2.2 Newton’s Method for Simultaneous Equations (Optional) 106
4.2.3 Exercises . 108

5 Numerical Differentiation . 109
5.1 Introduction . 109
5.2 Forward/Backward/Central Difference . 109
5.3 Exercises . 114

6 Numerical Integration . 115
6.1 Introduction . 115
6.2 Rectangular Rule . 115
6.3 Trapezoidal Rule . 117
6.4 Simpson’s Rule . 118
6.5 Exercises . 121

7 Solving Simultaneous Equations . 123
7.1 Introduction . 123
7.2 Gauss-Jordan Elimination Method . 126
7.3 LU Decomposition (Optional) . 129
7.4 Gauss-Seidel Method (Jacobi Method) . 133
7.5 Exercises . 135

8 Differential Equations . 137
8.1 Initial Value Problems . 137

8.1.1 Euler’s Method . 138
8.1.2 Runge-Kutta Method . 143

8.2 Higher-order Ordinary Differential Equations . 144
8.3 Exercises . 146

x

A Gnuplot . 149

B Octave (MATLAB) Tutorial for C Programmers . 153
B.1 Introduction . 153
B.2 Basic Operations . 153

B.2.1 Principles of Octave/MATLAB . 153
B.2.2 Reserved Constants . 155
B.2.3 Vectors/Matrices . 156
B.2.4 Graph . 158
B.2.5 I/O . 159
B.2.6 M-files . 160
B.2.7 Conditional Statement . 161

B.3 Sketch of Comparison Between C and Octave/MATLAB 162
B.4 Exercises . 167

C FORTRANTutorial for C Programmers . 169
C.1 FORTRAN Features . 169
C.2 How to Run a FORTRAN Program . 170
C.3 Sketch of Comparison Between C and FORTRAN 171
C.4 Exercises . 178

Author’s Biography . 181

Index . 183

xi

Preface
This book is aimed at those who want to learn the basics of programming quickly with imme-
diate applications to numerical analysis in mind. It is suitable as a textbook for sophomore-level
STEM students.

The book has two goals as the title indicates: The first goal is to introduce the concept
of computer programming using the C language. The second goal is to apply the programming
skill to numerical analysis for problems arising in scientific and engineering fields. No prior
knowledge of programming is assumed but it is desirable that the readers have a background in
sophomore-level calculus and linear algebra.

C was selected as the computer language of choice in this book. There have been con-
tinuous debates as to what programming language should be taught in college. Until around
the 1990s, FORTRAN had been the dominating programing language for scientific and en-
gineering computation which was gradually taken over by modern programming languages as
PASCAL and C. Today, MATLAB is taught in many universities as a first computer appli-
cation/language for STEM students. Python is also gaining popularity as a general purpose
programming language suitable as the first computer language to be taught.

Despite many options for the availability of various modern computer languages today,
adopting C for scientific and engineering computation still has several merits. C contains almost
all the concepts and syntax used in the modern computer languages less the paradigm of object-
oriented programming (use C++ and Java for that). It has been observed that whoever learns
C first can easily acquire other programming languages and applications such as MATLAB
quickly. The converse, however, does not hold. C is a compiled language and preferred over
interpreted languages for programs that require fast execution.

There is no shortage of good textbooks for the C language and good textbooks for numer-
ical analysis on the market but a proper combination of both seems to be hard to find. This book
is not a complete reference for C and numerical analysis. Instead, the book tries to minimize the
formality and limits the scope of C to these essential features that are absolutely necessary for
numerical analysis. Some features in C that are not relevant to numerical analysis are not covered
in this book. C++ is not covered either as the addition of object-oriented programming compo-
nents offers little benefit for numerical analysis. After finishing this book, the reader should be
able to work on many problems in engineering and science by writing their own C programs.

The book consists of two parts. In Part I, the general syntax of the C language is intro-
duced and explained in details. gcc is used as the compiler which is freely available on almost
all platforms. As the native platform of gcc is UNIX, a minimum introduction to the UNIX
operating system is also presented.

xii PREFACE
In Part II the major topics from numerical analysis are presented and corresponding C

programs are listed and explained. The subjects covered in Part II include solving a single equa-
tion, numerical differentiation, numerical integration, solving a set of simultaneous equations,
and solving differential equations.

In Appendix A, gnuplot which is a visualization application is introduced. The C lan-
guage itself has no graphical capabilities and requires an external program to visualize the output
from the program.

In Appendix B, a brief tutorial of Octave/MATLAB is given. This is meant for those who
are familiar with C but need to learn Octave/MATLAB in the shortest possible amount of time.

In Appendix C, a brief tutorial of FORTRAN is given. Again, this is meant for those who
are already familiar with C to be able to read programs written in FORTRAN (FORTRAN 77)
quickly.

This book is based on the course notes used for sophomore-level students of the Mechan-
ical and Aerospace Engineering major at The University of Texas at Arlington.

Seiichi Nomura
March 2018

xiii

Acknowledgments
I want to thank the students who took this course for their valuable feedback. I also want to
thank Paul Petralia of Morgan & Claypool Publishers and C.L. Tondo of T&T TechWorks,
Inc. for their support and encouragement.

All the programs and tools used in this book are freely available over the internet thanks
to the noble vision of the GNU project and the Free Software Foundation (FSF).

Seiichi Nomura
March 2018

PART I

Introduction to C Programming

3
In Part I, the basic syntax of the C language is introduced so that you can quickly write a pro-
gram for problems in science and engineering to be discussed in Part II. This is never meant
to be a complete reference for the C language. It covers only those items relevant to scien-
tific/engineering computation. However, after Part I, you should be able to explore missing
topics on your own. A minimum amount of computer environments is needed and all the pro-
grams listed should run on any version of gcc.

The only way to learn programming is to write a program by yourself. You never learn
programming if you just read books sitting on a sofa.

5

C H A P T E R 1

First Steps to Run a C Program
In this chapter, the basic cycle of running a C program is explained. To execute a C program, it
is necessary to first write a C code using a text editor, save the code with the file extension, “.c”,
launch a C compiler to translate the text into an binary code, and, if everything goes well, run
an executable (called a.out in UNIX). If this is the first time you program in C, it is important
that you try every single step described in the following sections.

1.1 ACYCLEOFCPROGRAMMING
There are a variety of ways to access a C compiler and run a C program. Almost all schools run
a UNIX server open to the students. You should be able to activate your account on the UNIX
server, connect to the server via an ssh1 client such as PuTTY over the internet, and run a freely
distributed C compiler, gcc.2

It is also possible to have a similar setup at home by running your own Linux server or
installing a PC/Mac version of gcc. If you come from a Windows or Mac environment, you
are accustomed to the graphical user interface (GUI) clicking an icon to open an application.
However, to use gcc, you must use the character-based interface (CUI) to compile and run your
program in a UNIX shell, in a command line (DOS) window (Windows) or in Terminal App
(Mac). To run gcc on the Windows system, you can go to www.mingw.org and download the
gcc installer, mingw-get-setup.exe.

In what follows in this book, we use PuTTY3 (terminal emulation software) to access a
UNIX server and run gcc on the server.

Figure 1.1 shows an opening screen when PuTTY is launched on the Windows system.
In the box circled, enter the name of a server that runs gcc and press the Open button. It will
prompt you to enter your username (case sensitive) and password (won’t echo back). Once you
are logged on the server, you are prompted to enter a command from the console (see Figure 1.2).
If you have never used a UNIX system before, you may want to play with some of the essential
UNIX commands.

Try the following:

1. Login to the server via PuTTY.
1ssh (Secure Shell) is a networking protocol by which two computers are connected via a secure channel.
2gcc is an abbreviation for GNU Compiler Collection. It is a compiler system produced by the GNU Project.
3PuTTY is a free and open-source terminal emulator available for the Windows system that can be downloaded from www.
putty.org. The size of the executable is less than 1 MB and the program loads very fast.

www.mingw.org
www.putty.org
www.putty.org

6 1. FIRST STEPSTORUNACPROGRAM

Figure 1.1: Opening screen of PuTTY.
2. Using nano,4 a simple text editor, compose your C program (Figure 1.3).

$ nano MyProgram.c

The symbol, $, is the system prompt so do not type it. Enter the following text into nano.
Note that all the input in UNIX is case-sensitive.

#include <stdio.h>
int main()
{
printf("Hello, World!\n");
return 0;
}

4nano is a simple editor that comes with all the installation of UNIX. It is a clone of another simple text editor, pico.

1.1. A CYCLEOFCPROGRAMMING 7

Figure 1.2: A UNIX session in PuTTY.

3. After you finish entering the text, save the file (Control-O5) by entering MyProgram.c6

as the file name to be saved and press Control-X to exit from nano. This will save the file
you just created permanently under the name of MyProgram.c.

4. The file you created with nano is a text file that is not understood by the computer. It is
necessary to translate this text file into a code which can be run on the computer. This
translation process is called compiling and the software to do this translation is called a
compiler. We use gcc for this purpose.
At the system prompt ($), run a C compiler (gcc) to generate an executable file (a.out7).

$ gcc MyProgram.c

If everything works, gcc will create an executable binary file whose default name is a.out.

5Hold down the control key and press O.
6The file name is case sensitive.
7a.out is an abbreviation for assembler output.

8 1. FIRST STEPSTORUNACPROGRAM

Figure 1.3: A nano session in PuTTY.

5. Run the executable file.
$./a.out8

6. If there is a syntax error, go back to item 2 and reissue nano.
$ nano MyProgram.c

7. If there is no syntax error, run the executable file.
$./a.out

8. To logoff from the server, enter exit, logout, or hit control-D.

1.2 UNIXCOMMANDPRIMER
In a perfect world, you could compose a C program, compile it, and run a.out and you are done
with it. This scenario may work for a program of less than 10 lines but as the size of the program
grows or the program depends on other modules, it is necessary to manipulate and organize
files on the UNIX system. Even though this is not an introductory book of the UNIX operating
8“./” represents the current directory. If the current directory is included in the PATH environmental variable, “./” is not
necessary.

1.2. UNIXCOMMANDPRIMER 9
system, a minimum amount of knowledge about the UNIX operating system is needed. The
following are some of the UNIX commands that are used often. Try each command yourself
from the system prompt and find out what it does. It won’t damage the machine.

• ls (Directory listing.)

• ls -l (Directory listing in long format.)

• ls -lt j more (Directory listing, one screen at one time, long format, chronological order.)

• dir (alias for ls)

• ls . (Lists the current directory.)

• cd .. (Moves to the directory one level up.)

• pwd (Shows the present working directory.)

• cd / (Moves to the top directory.)

• cd (Returns to the home directory.)

• mkdir MyNewFolder (Creates a new directory.)

• nano myfile.txt (Creates a new file.)

• cp program1.c program2.c (Copies program1.c to program2.c.)

• mv old.c new.c (Renames old.c to new.c.)

• rm program.c (Deletes program.c.)

• rm *.c (Do not do this. It will delete all the files with extension c.)

• whoami (Shows your username.)

• who (Shows who are logged on.)

• cal (Shows this year’s calendar.)

• cal 1980 (Shows the calendar of 1980.)

To quickly move while entering/editing a command line and in nano sessions, master the fol-
lowing shortcuts. ^f means holding down the control key and pressing the f key.

• ^f (Moves cursor forward by one character, f for forward.)

• ^b (Moves cursor backward by one character, b for backward.)

10 1. FIRST STEPSTORUNACPROGRAM
• ^d (Deletes a character on cursor, d for delete.)

• ^k (Deletes entire line, k for kill.)

• ^p (Moves to previous line, same as up arrow, p for previous.)

• ^n (Moves to next line, same as down arrow, n for next.)

• ^a (Moves to top of line, a for the first alphabet.)

• ^e (Moves to end of line, e for end.)

1.3 OVERVIEWOFCPROGRAMMING
Arguably, the most important book on the C language is a book known as “K&R” written by
Kernighan and Ritchie9 who themselves developed the C language. It is concise yet well-written
and is highly recommended for reading.

1.3.1 PRINCIPLESOFCLANGUAGE
Surprisingly, the C language is based on a few simple principles.They are summarized as follows:

1. A C program is a set of functions.

2. A function in C is a code that follows the syntax below:

type name(type var)
{
your C code here.....
......
return value;
}

3. A function must be defined before it is used.

4. A function must return a value whose type must be declared (one of int, float, double,
char). The last line of a function must be a return xx statement where xx is a value to
be returned upon exit.

5. A function must take arguments and must have a placeholder () even if there is no argu-
ment.

6. The content of a function must be enclosed by “{” and “}”.
9Kernighan and Ritchie, C Programming Language, 2nd ed., Prentice Hall, 1988.

1.3. OVERVIEWOFCPROGRAMMING 11
7. A special function, int main(), is the one which is executed first. It is recommended that

this function returns an integer value of 0.

8. All the variables used within a function must be declared.

1.3.2 SKELETONCPROGRAM
The following program is absolutely the smallest C program that can be written:

int main()
{
return 0;
}

You can compile and execute this program by issuing the following commands:
$ gcc MyProgram.c
$./a.out

where MyProgram.c is the name under which the file was saved. Even though it is the smallest
C program, the program itself is a full-fledged C code. Of course, this program does nothing
and when you issue ./a.out, the program simply exits after being executed and you are returned
to the system prompt.

Here is a line-by-line analysis of the program above. Refer to Section 1.3.1 for the list
of items. The first line, int main(), indicates that a function whose name is main is declared
that returns an integer value (int) upon exit (Item 4). This function takes no arguments (empty
parameters within the parentheses) (Item 5).The program consists of only one function, main(),
which is executed first (Item 7). The content of the function, main(), is the line(s) surrounded
by { and } (Item 6). In this case, the program executes the return 0 statement and exits back to
the operating system returning a 0 value to the operating system. As C is a free-form language,
the end of each statement has to be clearly marked. A semicolon ; is placed at the end of each
statement. Hence, return 0;.

The following program is a celebrated code that appeared first in the K&R book in the
Getting Started section and later adapted in just about every introductory book for C as the first
C program that prints “Hello, World!” followed by an extra blank line.

1:#include <stdio.h>
2:int main()
3:{
4:printf("Hello, World!\n");
5:return 0;
6:}

12 1. FIRST STEPSTORUNACPROGRAM
Each line in the above program is now parsed.The first line, #include <stdio.h>, is a bit

confusing but let’s skip this line for the time being and move to the subsequent lines. If you com-
pile the program and execute a.out, you will find out that the program prints Hello, World!
followed by a new line on the screen. Hence, you can guess that the odd characters, \n, repre-
sents a blank line. As there is no character that represents a blank line, you figure out that \n
can be used as printing a blank line.

Next, note that the part printf is followed by a pair of parentheses and therefore,
it is a function in C (Item 5). It is obvious that this function, printf(), prints a string,
Hello, World!, and quits. As it is a function in C, it has to be defined and declared before
it is used. However, no such definition is found above the function, main(). The first line,
#include <stdio.h>, is in fact referring to a file that contains the definition of printf() that
is preloaded before anything else. The file, stdio.h, is one of the header (hence the extension, h)
files available in the C library that is shipped with gcc. As the name indicates (stdio = Standard
Input and Output), this header file has the definition of many functions that deal with input
and output (I/O) functions.

Finally, a function must have information about the type of the value it returns such as
int, float, double, etc…(Item 4). In this case, the function int main() is declared to return
an integer value upon exit. Sure enough, the last statement return 0; is to return 0 when the
execution is done and 0 is an integer.

Here is how gcc parses this program line by line:

Line 1 Before anything else, let’s load a header file, <stdio.h>, that contains the definition of
all the functions that deal with I/O from the system area.

Line 2 This is the start of a function called main(). This function returns an integer value int
upon exit. This function has no parameters to pass so the content within the parentheses
is empty.

Line 3 The { character indicates that this is the beginning of the content of the function,
main().

Line 4 This line calls the function, printf(), that is defined in <stdio.h> and prints out a
string of Hello, World! followed by a blank line. A semicolon, ;, marks the end of this
function.

Line 5 This is the last statement of the function, main(). It will return the value 0 to the oper-
ating system and exit.

Line 6 The } character indicates the end of the content of the function, main().

You can execute this program by

$ nano hello.c

1.3. OVERVIEWOFCPROGRAMMING 13
(Enter the content of the program above.)

$ gcc hello.c

(If it is not compiled, reedit hello.c.)

$./a.out
Hello, World!

Here is another program that does some scientific computation.

1:#include <stdio.h>
2:#include <math.h>
3: /* This is a comment */
4:int main()
5: {
6: float x, y;
7: x = 6.28;
8: y=sin(x);
9: printf("Sine of %f is %f.\n", x, y);
10: return 0;
11:}

This program computes the value of sin x where x D 6:28. The program can be compiled
as

$ gcc MyProgram.c -lm

Note that the -lm10 option is necessary when including <math.h>.11
Here is a line by line analysis of the program:

Line 1 The program preloads a header file, <stdio.h>.

Line 2 The program also preloads an another header file, <math.h>. This header file is necessary
whenever mathematical functions such as sin.x/ are used in the program.

Line 3 This entire line is a comment. Anything surrounded by /* and /* is a comment and is
ignored by the compiler.12

Line 4 This is the declaration of a function, main(), that returns an integer value but with no
parameter.

10“-l” is to load a library and “m” stands for the math library.
11<math.h> only contains protocol declarations for mathematical functions. It is necessary to locally load the mathematical

library, libm.a by the -lm option.
12A comment can also start with //. This for one-line comment originated in C++.

14 1. FIRST STEPSTORUNACPROGRAM
Line 5 The { character indicates that this is the beginning of the content of the function,

main().

Line 6 Two variables, x and y, are declared both of which represent floating numbers.

Line 7 The variable, x, is assigned a floating number, 6.28.

Line 8 The function, sin.x/, is evaluated where x is 6.28 and the result is assigned to the variable,
y.

Line 9 The result is printed. First, a literal string of “Sine of” is printed followed by the actual
value of x and “is” is printed followed by the actual value of y, a period and a new line.

Line 10 The function, main(), exits with a return value of 0.

Line 11 The } character indicates that this is the end of the content of the function, main().

There are several new concepts in this program that need to be explained. The second line
is to preload yet another header file, math.h, as this program computes the sine of a number.
In the fourth line, two variables, x and y, are declared. The float part indicates that the two
variables represent floating numbers (real numbers with the decimal point). The fifth line says
that a number, 6.28, is assigned to the variable, x. The equal sign (=) here is not the mathematical
equality that you are accustomed to. In C and all other computer languages, an equal sign (=)
is exclusively used for substitution, i.e., the value to the right of = is assigned to the variable
to the left of =. In the eighth line, the printf() function is to print a list of variables (x and
y) with formating specified by the double quotation marks (“...”). The way formating works is
that printf() prints everything literally within the parentheses except for special codes starting
with the percentage sign (%). Here, %f represents a floating number which is to be replaced by
the actual value of the variable. As there are two %f’s, the first %f is replaced by the value of x
and the second %f is replaced by the value of y. The details of the new concepts shown here will
be explained in detail in Chapter 2.

1.4 EXERCISES
It is not necessary to know all the syntax of C to work on the following problems. Each problem
has a template that you can modify. Start with the template code, keep modifying the code and
understand what each statement does. It is essential that you actually write the code yourself
(not copy and paste) and execute it.

1. Write a C program to print three blank lines followed by “Hello, World!”. Use the follow-
ing code as a template:

1.4. EXERCISES 15

#include <stdio.h>
int main()
{
printf("\nHello, World!\n\n");
return 0;
}

\n prints a new line.

2. Write a program to read two real numbers from the keyboard and to print their product.
Use the following code as a template. Do not worry about the syntax, just modify one
place.

#include <stdio.h>
int main()
{
int a, b; /* to declare that a and b are integer variables */
printf("Enter two integer numbers separated by space =");
scanf("%d %d", &a, &b); /* This is the way to read two integer
numbers and assign them to a and b. */
printf("The sum of the two numbers is %d.\n", a+b); /* %d is for

integer format. */
return 0;
}

3. Write a program to read a real number, x, and outputs its sine, i.e., sin.x/. You need to use
<math.h> and the -lm compile option. Use the following template program that computes
ex .

#include <stdio.h>
#include <math.h>
int main()
{
float x;
printf("Enter a number ="); scanf("%f", &x);
printf("x= %f exp(x)=%f\n",x, exp(x));
return 0;
}

16 1. FIRST STEPSTORUNACPROGRAM
You have to use the -lm option when compiling:

$ gcc MyProgram.c -lm
$./a.out

17

C H A P T E R 2

Components of C Language
In this chapter, the essential components of the C language are introduced and explained. The
syntax covered in this chapter is not exhaustive but after this chapter you should be able to write
a simple C program that can solve many problems in engineering and science.

2.1 VARIABLESANDDATATYPES
Every single variable used in C must have a type which the value of the variable represents. There
are four variable types listed in Table 2.1.

Table 2.1: Data types

Type Content Format Range Example

int Integer %d –2147483647 ~ +2147483647 10

fl oat Floating number %f ±2.9387e – 39 ~ ± 1.7014e + 38 3.14

double Double precision %lf 2–63 ~ 2+63 3.14159265358979

char Character %c ASCII code ’a’

In Table 2.1, the third column shows the format of each data type which is used in the
print() and scanf() functions.

• int represents an integer value. The range of int depends on the hardware and the ver-
sion of the compiler. In most modern systems, int represents from -2147483647 to
2147483647.

• float represents a floating number. This will take care of most non-scientific floating
numbers (single precision). For scientific and engineering computation, double must be
used.

• double is an extension of float. This data type can handle a larger floating number at the
expense of the amount of memory used (but not much).

• char represents a single ASCII character.This data type is actually a subset of int in which
the range is limited to 0 � 255. The character represented by char must be enclosed by a
single quotation mark (').

18 2. COMPONENTSOFCLANGUAGE

2.1.1 CASTOPERATORS
When an operation between variables of different types is performed, the variables of a lower
type are automatically converted to the highest type following this order:

int=char < float < double

For example, for a * b in which a is of int type and b is of float type, then, a is
converted to the float type automatically and the result is also of float type. There are times
when two variables are both int type yet the result of the operation is desired to be of float
type. For example,

#include <stdio.h>
int main()
{

int a, b;
a=3; b=5;
printf("%f\n", a/b);
return 0;

}

The output is

$ gcc prog.c
2.c: In function 'main':
2.c:6:10: warning: format '%f' expects argument of type 'double',

but argument 2 has type 'int' [-Wformat=]
printf("%f\n", a/b);

^
$./a.out
-0.000000

It prints 0 with a warning even though the result is expected to be 0.6. To carry out this operation
as intended,1 a cast operator (an operator to allow to change the type of a variable to a specified
type temporarily) must be used as

#include <stdio.h>
int main()
{

int a,b;

1Another way of achieving this is to modify a/b to 1.0*a/b.

2.1. VARIABLESANDDATATYPES 19

a=3;b=5;
printf("%f\n", (float)a/b);
return 0;

}

The output is

$ gcc prog.c
$./a.out
0.600000

The (float)a/b part forces both variables to be of float type and returns 0.6 as expected.

2.1.2 EXAMPLESOFDATATYPE
1. This program prints a character, “h”.

/*
Print a character
*/
#include <stdio.h>
int main()
{
char a='h';
printf("%c\n",a);
return 0;
}

Note that the variable, a, is declared as char and initialized as “h” on the same line.

2. This program prints an integer 10.

/*
Print an integer
*/
#include <stdio.h>
int main()
{
int a=10;
printf("%d\n",a);

20 2. COMPONENTSOFCLANGUAGE

return 0;
}

Note that the variable, a, is declared as int and initialized as 10 on the same line.

3. This program prints a floating number 10.5.

/* Print a floating number */
#include <stdio.h>
int main()
{
float a=10.5;
printf("%f\n",a);
return 0;
}

Note that the variable, a, is declared as float and initialized as 10.5 on the same line.

4. This program prints two floating numbers, 10.0 and -2.3.

/* Print floating numbers */
#include <stdio.h>
int main()
{
float a, b=9.0, c;
a=10.0; c=-2.3;
printf("a = %f\n",a);
printf("c = %f\n",c);
return 0;
}

2.2 INPUT/OUTPUT
Almost all C programs have at least one output statement. Otherwise, the program won’t output
anything on the screen and there is no knowing if the program ran successfully or not. The most
common input/output functions are printf() and scanf() both of which are defined in the
header file stdio.h.

Use printf() (Print with Format) for outputting data to the console and scanf() (Scan
with Format) for inputting data from the keyboard.

