
Neural Network Methods for
Natural Language Processing

Synthesis Lectures on Human
Language Technologies

Editor
Graeme Hirst,University of Toronto

Synthesis Lectures on Human Language Technologies is edited by Graeme Hirst of the University
of Toronto. e series consists of 50- to 150-page monographs on topics relating to natural language
processing, computational linguistics, information retrieval, and spoken language understanding.
Emphasis is on important new techniques, on new applications, and on topics that combine two or
more HLT subfields.

Neural Network Methods for Natural Language Processing
Yoav Goldberg
2017

Syntax-based Statistical Machine Translation
Philip Williams, Rico Sennrich, Matt Post, and Philipp Koehn
2016

Domain-Sensitive Temporal Tagging
Jannik Strötgen and Michael Gertz
2016

Linked Lexical Knowledge Bases: Foundations and Applications
Iryna Gurevych, Judith Eckle-Kohler, and Michael Matuschek
2016

Bayesian Analysis in Natural Language Processing
Shay Cohen
2016

Metaphor: A Computational Perspective
Tony Veale, Ekaterina Shutova, and Beata Beigman Klebanov
2016

Grammatical Inference for Computational Linguistics
Jeffrey Heinz, Colin de la Higuera, and Menno van Zaanen
2015

iii

Automatic Detection of Verbal Deception
Eileen Fitzpatrick, Joan Bachenko, and Tommaso Fornaciari
2015

Natural Language Processing for Social Media
Atefeh Farzindar and Diana Inkpen
2015

Semantic Similarity from Natural Language and Ontology Analysis
Sébastien Harispe, Sylvie Ranwez, Stefan Janaqi, and Jacky Montmain
2015

Learning to Rank for Information Retrieval and Natural Language Processing, Second
Edition
Hang Li
2014

Ontology-Based Interpretation of Natural Language
Philipp Cimiano, Christina Unger, and John McCrae
2014

Automated Grammatical Error Detection for Language Learners, Second Edition
Claudia Leacock, Martin Chodorow, Michael Gamon, and Joel Tetreault
2014

Web Corpus Construction
Roland Schäfer and Felix Bildhauer
2013

Recognizing Textual Entailment: Models and Applications
Ido Dagan, Dan Roth, Mark Sammons, and Fabio Massimo Zanzotto
2013

Linguistic Fundamentals for Natural Language Processing: 100 Essentials from
Morphology and Syntax
Emily M. Bender
2013

Semi-Supervised Learning and Domain Adaptation in Natural Language Processing
Anders Søgaard
2013

Semantic Relations Between Nominals
Vivi Nastase, Preslav Nakov, Diarmuid Ó Séaghdha, and Stan Szpakowicz
2013

iv

Computational Modeling of Narrative
Inderjeet Mani
2012

Natural Language Processing for Historical Texts
Michael Piotrowski
2012

Sentiment Analysis and Opinion Mining
Bing Liu
2012

Discourse Processing
Manfred Stede
2011

Bitext Alignment
Jörg Tiedemann
2011

Linguistic Structure Prediction
Noah A. Smith
2011

Learning to Rank for Information Retrieval and Natural Language Processing
Hang Li
2011

Computational Modeling of Human Language Acquisition
Afra Alishahi
2010

Introduction to Arabic Natural Language Processing
Nizar Y. Habash
2010

Cross-Language Information Retrieval
Jian-Yun Nie
2010

Automated Grammatical Error Detection for Language Learners
Claudia Leacock, Martin Chodorow, Michael Gamon, and Joel Tetreault
2010

Data-Intensive Text Processing with MapReduce
Jimmy Lin and Chris Dyer
2010

v

Semantic Role Labeling
Martha Palmer, Daniel Gildea, and Nianwen Xue
2010

Spoken Dialogue Systems
Kristiina Jokinen and Michael McTear
2009

Introduction to Chinese Natural Language Processing
Kam-Fai Wong, Wenjie Li, Ruifeng Xu, and Zheng-sheng Zhang
2009

Introduction to Linguistic Annotation and Text Analytics
Graham Wilcock
2009

Dependency Parsing
Sandra Kübler, Ryan McDonald, and Joakim Nivre
2009

Statistical Language Models for Information Retrieval
ChengXiang Zhai
2008

Copyright © 2017 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Neural Network Methods for Natural Language Processing

Yoav Goldberg

www.morganclaypool.com

ISBN: 9781627052986 paperback
ISBN: 9781627052955 ebook

DOI 10.2200/S00762ED1V01Y201703HLT037

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON HUMAN LANGUAGE TECHNOLOGIES

Lecture #37
Series Editor: Graeme Hirst, University of Toronto
Series ISSN
Print 1947-4040 Electronic 1947-4059

www.morganclaypool.com

Neural Network Methods for
Natural Language Processing

Yoav Goldberg
Bar Ilan University

SYNTHESIS LECTURES ON HUMAN LANGUAGE TECHNOLOGIES #37

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
Neural networks are a family of powerful machine learning models. is book focuses on the
application of neural network models to natural language data. e first half of the book (Parts I
and II) covers the basics of supervised machine learning and feed-forward neural networks, the
basics of working with machine learning over language data, and the use of vector-based rather
than symbolic representations for words. It also covers the computation-graph abstraction, which
allows to easily define and train arbitrary neural networks, and is the basis behind the design of
contemporary neural network software libraries.

e second part of the book (Parts III and IV) introduces more specialized neural net-
work architectures, including 1D convolutional neural networks, recurrent neural networks,
conditioned-generation models, and attention-based models. ese architectures and techniques
are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing,
and many other applications. Finally, we also discuss tree-shaped networks, structured prediction,
and the prospects of multi-task learning.

KEYWORDS
natural language processing, machine learning, supervised learning, deep learning,
neural networks, word embeddings, recurrent neural networks, sequence to sequence
models

ix

Contents
Preface . xvii

Acknowledgments . xxi

1 Introduction . 1
1.1 e Challenges of Natural Language Processing . 1
1.2 Neural Networks and Deep Learning . 2
1.3 Deep Learning in NLP . 3

1.3.1 Success Stories . 4
1.4 Coverage and Organization . 6
1.5 What’s not Covered . 8
1.6 A Note on Terminology . 9
1.7 Mathematical Notation . 9

PART I Supervised Classification and Feed-forward
Neural Networks . 11

2 Learning Basics and Linear Models . 13
2.1 Supervised Learning and Parameterized Functions . 13
2.2 Train, Test, and Validation Sets . 14
2.3 Linear Models . 16

2.3.1 Binary Classification . 16
2.3.2 Log-linear Binary Classification . 20
2.3.3 Multi-class Classification . 21

2.4 Representations . 22
2.5 One-Hot and Dense Vector Representations . 23
2.6 Log-linear Multi-class Classification . 24
2.7 Training as Optimization . 25

2.7.1 Loss Functions . 26
2.7.2 Regularization . 29

x

2.8 Gradient-based Optimization . 30
2.8.1 Stochastic Gradient Descent . 31
2.8.2 Worked-out Example . 33
2.8.3 Beyond SGD . 35

3 From Linear Models to Multi-layer Perceptrons . 37
3.1 Limitations of Linear Models: e XOR Problem . 37
3.2 Nonlinear Input Transformations . 38
3.3 Kernel Methods . 38
3.4 Trainable Mapping Functions . 39

4 Feed-forward Neural Networks . 41
4.1 A Brain-inspired Metaphor . 41
4.2 In Mathematical Notation . 43
4.3 Representation Power . 44
4.4 Common Nonlinearities . 45
4.5 Loss Functions . 46
4.6 Regularization and Dropout . 47
4.7 Similarity and Distance Layers . 48
4.8 Embedding Layers . 49

5 Neural Network Training . 51
5.1 e Computation Graph Abstraction . 51

5.1.1 Forward Computation . 53
5.1.2 Backward Computation (Derivatives, Backprop) 54
5.1.3 Software . 55
5.1.4 Implementation Recipe . 57
5.1.5 Network Composition . 58

5.2 Practicalities . 58
5.2.1 Choice of Optimization Algorithm . 59
5.2.2 Initialization . 59
5.2.3 Restarts and Ensembles . 59
5.2.4 Vanishing and Exploding Gradients . 60
5.2.5 Saturation and Dead Neurons . 60
5.2.6 Shuffling . 61
5.2.7 Learning Rate . 61
5.2.8 Minibatches . 61

xi

PART II Working with Natural Language Data 63
6 Features for Textual Data . 65

6.1 Typology of NLP Classification Problems . 65
6.2 Features for NLP Problems . 67

6.2.1 Directly Observable Properties . 67
6.2.2 Inferred Linguistic Properties . 70
6.2.3 Core Features vs. Combination Features . 74
6.2.4 Ngram Features . 75
6.2.5 Distributional Features . 76

7 Case Studies of NLP Features . 77
7.1 Document Classification: Language Identification . 77
7.2 Document Classification: Topic Classification . 77
7.3 Document Classification: Authorship Attribution . 78
7.4 Word-in-context: Part of Speech Tagging . 79
7.5 Word-in-context: Named Entity Recognition . 81
7.6 Word in Context, Linguistic Features: Preposition Sense Disambiguation 82
7.7 Relation Between Words in Context: Arc-Factored Parsing 85

8 From Textual Features to Inputs . 89
8.1 Encoding Categorical Features . 89

8.1.1 One-hot Encodings . 89
8.1.2 Dense Encodings (Feature Embeddings) . 90
8.1.3 Dense Vectors vs. One-hot Representations . 90

8.2 Combining Dense Vectors . 92
8.2.1 Window-based Features . 93
8.2.2 Variable Number of Features: Continuous Bag of Words 93

8.3 Relation Between One-hot and Dense Vectors . 94
8.4 Odds and Ends . 95

8.4.1 Distance and Position Features . 95
8.4.2 Padding, Unknown Words, and Word Dropout 96
8.4.3 Feature Combinations . 98
8.4.4 Vector Sharing . 98
8.4.5 Dimensionality . 99
8.4.6 Embeddings Vocabulary . 99
8.4.7 Network’s Output . 99

xii

8.5 Example: Part-of-Speech Tagging . 100
8.6 Example: Arc-factored Parsing . 101

9 Language Modeling . 105
9.1 e Language Modeling Task . 105
9.2 Evaluating Language Models: Perplexity . 106
9.3 Traditional Approaches to Language Modeling . 107

9.3.1 Further Reading . 108
9.3.2 Limitations of Traditional Language Models . 108

9.4 Neural Language Models . 109
9.5 Using Language Models for Generation . 112
9.6 Byproduct: Word Representations . 113

10 Pre-trained Word Representations . 115
10.1 Random Initialization . 115
10.2 Supervised Task-specific Pre-training . 115
10.3 Unsupervised Pre-training . 116

10.3.1 Using Pre-trained Embeddings . 117
10.4 Word Embedding Algorithms . 117

10.4.1 Distributional Hypothesis and Word Representations 118
10.4.2 From Neural Language Models to Distributed Representations 122
10.4.3 Connecting the Worlds . 125
10.4.4 Other Algorithms . 126

10.5 e Choice of Contexts . 127
10.5.1 Window Approach . 127
10.5.2 Sentences, Paragraphs, or Documents . 129
10.5.3 Syntactic Window . 129
10.5.4 Multilingual . 130
10.5.5 Character-based and Sub-word Representations 131

10.6 Dealing with Multi-word Units and Word Inflections 132
10.7 Limitations of Distributional Methods . 133

11 Using Word Embeddings . 135
11.1 Obtaining Word Vectors . 135
11.2 Word Similarity . 135
11.3 Word Clustering . 136

xiii

11.4 Finding Similar Words . 136
11.4.1 Similarity to a Group of Words . 137

11.5 Odd-one Out . 137
11.6 Short Document Similarity . 137
11.7 Word Analogies . 138
11.8 Retrofitting and Projections . 139
11.9 Practicalities and Pitfalls . 140

12 Case Study: A Feed-forward Architecture for Sentence Meaning Inference . . 141

12.1 Natural Language Inference and the SNLI Dataset . 141
12.2 A Textual Similarity Network . 142

PART III Specialized Architectures 147

13 Ngram Detectors: Convolutional Neural Networks . 151

13.1 Basic Convolution + Pooling . 152
13.1.1 1D Convolutions Over Text . 153
13.1.2 Vector Pooling . 155
13.1.3 Variations . 158

13.2 Alternative: Feature Hashing . 158
13.3 Hierarchical Convolutions . 159

14 Recurrent Neural Networks: Modeling Sequences and Stacks 163

14.1 e RNN Abstraction . 164
14.2 RNN Training . 166
14.3 Common RNN Usage-patterns . 167

14.3.1 Acceptor . 167
14.3.2 Encoder . 167
14.3.3 Transducer . 168

14.4 Bidirectional RNNs (biRNN) . 169
14.5 Multi-layer (stacked) RNNs . 171
14.6 RNNs for Representing Stacks . 172
14.7 A Note on Reading the Literature . 174

xiv

15 Concrete Recurrent Neural Network Architectures . 177

15.1 CBOW as an RNN . 177
15.2 Simple RNN. 177
15.3 Gated Architectures . 178

15.3.1 LSTM . 179
15.3.2 GRU . 181

15.4 Other Variants . 182
15.5 Dropout in RNNs . 183

16 Modeling with Recurrent Networks . 185

16.1 Acceptors . 185
16.1.1 Sentiment Classification . 185
16.1.2 Subject-verb Agreement Grammaticality Detection 187

16.2 RNNs as Feature Extractors . 189
16.2.1 Part-of-speech Tagging . 189
16.2.2 RNN–CNN Document Classification . 191
16.2.3 Arc-factored Dependency Parsing . 192

17 Conditioned Generation . 195

17.1 RNN Generators . 195
17.1.1 Training Generators . 196

17.2 Conditioned Generation (Encoder-Decoder) . 196
17.2.1 Sequence to Sequence Models . 198
17.2.2 Applications . 200
17.2.3 Other Conditioning Contexts . 202

17.3 Unsupervised Sentence Similarity . 203
17.4 Conditioned Generation with Attention . 204

17.4.1 Computational Complexity . 208
17.4.2 Interpretability . 208

17.5 Attention-based Models in NLP . 208
17.5.1 Machine Translation . 209
17.5.2 Morphological Inflection . 210
17.5.3 Syntactic Parsing . 211

xv

PART IV Additional Topics . 213
18 Modeling Trees with Recursive Neural Networks . 215

18.1 Formal Definition . 215
18.2 Extensions and Variations . 218
18.3 Training Recursive Neural Networks . 219
18.4 A Simple Alternative–Linearized Trees . 219
18.5 Outlook . 220

19 Structured Output Prediction . 221
19.1 Search-based Structured Prediction . 221

19.1.1 Structured Prediction with Linear Models . 221
19.1.2 Nonlinear Structured Prediction . 222
19.1.3 Probabilistic Objective (CRF) . 224
19.1.4 Approximate Search . 224
19.1.5 Reranking . 225
19.1.6 See Also . 225

19.2 Greedy Structured Prediction . 226
19.3 Conditional Generation as Structured Output Prediction 227
19.4 Examples . 228

19.4.1 Search-based Structured Prediction: First-order Dependency Parsing . 228
19.4.2 Neural-CRF for Named Entity Recognition . 229
19.4.3 Approximate NER-CRF With Beam-Search . 232

20 Cascaded, Multi-task and Semi-supervised Learning . 235
20.1 Model Cascading . 235
20.2 Multi-task Learning . 238

20.2.1 Training in a Multi-task Setup . 241
20.2.2 Selective Sharing . 242
20.2.3 Word-embeddings Pre-training as Multi-task Learning 243
20.2.4 Multi-task Learning in Conditioned Generation 243
20.2.5 Multi-task Learning as Regularization . 243
20.2.6 Caveats . 244

20.3 Semi-supervised Learning . 244
20.4 Examples . 245

20.4.1 Gaze-prediction and Sentence Compression . 245
20.4.2 Arc Labeling and Syntactic Parsing . 246

xvi

20.4.3 Preposition Sense Disambiguation and Preposition Translation
Prediction . 247

20.4.4 Conditioned Generation: Multilingual Machine Translation,
Parsing, and Image Captioning . 249

20.5 Outlook . 250

21 Conclusion . 251
21.1 What Have We Seen? . 251
21.2 e Challenges Ahead . 251

Bibliography . 253

Author’s Biography . 287

xvii

Preface
Natural language processing (NLP) is a collective term referring to automatic computational pro-
cessing of human languages. is includes both algorithms that take human-produced text as
input, and algorithms that produce natural looking text as outputs. e need for such algorithms
is ever increasing: human produce ever increasing amounts of text each year, and expect com-
puter interfaces to communicate with them in their own language. Natural language processing
is also very challenging, as human language is inherently ambiguous, ever changing, and not well
defined.

Natural language is symbolic in nature, and the first attempts at processing language were
symbolic: based on logic, rules, and ontologies. However, natural language is also highly ambigu-
ous and highly variable, calling for a more statistical algorithmic approach. Indeed, the current-
day dominant approaches to language processing are all based on statistical machine learning. For
over a decade, core NLP techniques were dominated by linear modeling approaches to supervised
learning, centered around algorithms such as Perceptrons, linear Support Vector Machines, and
Logistic Regression, trained over very high dimensional yet very sparse feature vectors.

Around 2014, the field has started to see some success in switching from such linear models
over sparse inputs to nonlinear neural network models over dense inputs. Some of the neural-
network techniques are simple generalizations of the linear models and can be used as almost
drop-in replacements for the linear classifiers. Others are more advanced, require a change of
mindset, and provide new modeling opportunities. In particular, a family of approaches based
on recurrent neural networks (RNNs) alleviates the reliance on the Markov Assumption that was
prevalent in sequence models, allowing to condition on arbitrarily long sequences and produce
effective feature extractors. ese advances led to breakthroughs in language modeling, automatic
machine translation, and various other applications.

While powerful, the neural network methods exhibit a rather strong barrier of entry, for
various reasons. In this book, I attempt to provide NLP practitioners as well as newcomers with
the basic background, jargon, tools, and methodologies that will allow them to understand the
principles behind neural network models for language, and apply them in their own work. I also
hope to provide machine learning and neural network practitioners with the background, jargon,
tools, and mindset that will allow them to effectively work with language data.

Finally, I hope this book can also serve a relatively gentle (if somewhat incomplete) intro-
duction to both NLP and machine learning for people who are newcomers to both fields.

xviii PREFACE

INTENDED READERSHIP
is book is aimed at readers with a technical background in computer science or a related field,
who want to get up to speed with neural network techniques for natural language processing.
While the primary audience of the book is graduate students in language processing and machine
learning, I made an effort to make it useful also to established researchers in either NLP or ma-
chine learning (by including some advanced material), and to people without prior exposure to
either machine learning or NLP (by covering the basics from the grounds up). is last group of
people will, obviously, need to work harder.

While the book is self contained, I do assume knowledge of mathematics, in particular
undergraduate level of probability, algebra, and calculus, as well as basic knowledge of algorithms
and data structures. Prior exposure to machine learning is very helpful, but not required.

is book evolved out of a survey paper [Goldberg, 2016], which was greatly expanded and
somewhat re-organized to provide a more comprehensive exposition, and more in-depth coverage
of some topics that were left out of the survey for various reasons. is book also contains many
more concrete examples of applications of neural networks to language data that do not exist in
the survey. While this book is intended to be useful also for people without NLP or machine
learning backgrounds, the survey paper assumes knowledge in the field. Indeed, readers who are
familiar with natural language processing as practiced between roughly 2006 and 2014, with heavy
reliance on machine learning and linear models, may find the journal version quicker to read and
better organized for their needs. However, such readers may also appreciate reading the chapters
on word embeddings (10 and 11), the chapter on conditioned generation with RNNs (17), and
the chapters on structured prediction and multi-task learning (MTL) (19 and 20).

FOCUS OF THIS BOOK
is book is intended to be self-contained, while presenting the different approaches under a uni-
fied notation and framework.However, themain purpose of the book is in introducing the neural-
networks (deep-learning) machinery and its application to language data, and not in providing
an in-depth coverage of the basics of machine learning theory and natural language technology.
I refer the reader to external sources when these are needed.

Likewise, the book is not intended as a comprehensive resource for those who will go on
and develop the next advances in neural network machinery (although it may serve as a good
entry point). Rather, it is aimed at those readers who are interested in taking the existing, use-
ful technology and applying it in useful and creative ways to their favorite language-processing
problems.

PREFACE xix

..

Further reading For in-depth, general discussion of neural networks, the theory behind
them, advanced optimization methods, and other advanced topics, the reader is referred to
other existing resources. In particular, the book by Bengio et al. [2016] is highly recom-
mended.

For a friendly yet rigorous introduction to practical machine learning, the freely avail-
able book of Daumé III [2015] is highly recommended. For more theoretical treatment of
machine learning, see the freely available textbook of Shalev-Shwartz and Ben-David [2014]
and the textbook of Mohri et al. [2012].

For a strong introduction to NLP, see the book of Jurafsky and Martin [2008]. e
information retrieval book by Manning et al. [2008] also contains relevant information for
working with language data.

Finally, for getting up-to-speed with linguistic background, the book of Bender [2013]
in this series provides a concise but comprehensive coverage, directed at computationally
minded readers. e first chapters of the introductory grammar book by Sag et al. [2003] are
also worth reading.

As of this writing, the progress of research in neural networks and Deep Learning is very
fast paced. e state-of-the-art is a moving target, and I cannot hope to stay up-to-date with the
latest-and-greatest. e focus is thus with covering the more established and robust techniques,
that were proven to work well in several occasions, as well as selected techniques that are not yet
fully functional but that I find to be established and/or promising enough for inclusion.

Yoav Goldberg
March 2017

xxi

Acknowledgments
is book grew out of a survey paper I’ve written on the topic [Goldberg, 2016], which in turn
grew out of my frustration with the lack organized and clear material on the intersection of deep
learning and natural language processing, as I was trying to learn it and teach it to my students
and collaborators. I am thus indebted to the numerous people who commented on the survey
paper (in its various forms, from initial drafts to post-publication comments), as well as to the
people who commented on various stages of the book’s draft. Some commented in person, some
over email, and some in random conversations on Twitter. e book was also influenced by people
who did not comment on it per-se (indeed, some never read it) but discussed topics related to it.
Some are deep learning experts, some are NLP experts, some are both, and others were trying to
learn both topics. Some (few) contributed through very detailed comments, others by discussing
small details, others in between. But each of them influenced the final form of the book. ey are,
in alphabetical order: Yoav Artzi, Yonatan Aumann, Jason Baldridge, Miguel Ballesteros, Mohit
Bansal, Marco Baroni, Tal Baumel, Sam Bowman, Jordan Boyd-Graber, Chris Brockett, Ming-
Wei Chang, David Chiang, Kyunghyun Cho, Grzegorz Chrupala, Alexander Clark, Raphael
Cohen, Ryan Cotterell, Hal Daumé III, Nicholas Dronen, Chris Dyer, Jacob Eisenstein, Jason
Eisner, Michael Elhadad, Yad Faeq, Manaal Faruqui, Amir Globerson, Fréderic Godin, Edward
Grefenstette, Matthew Honnibal, Dirk Hovy, Moshe Koppel, Angeliki Lazaridou, Tal Linzen,
ang Luong, Chris Manning, Stephen Merity, Paul Michel, Margaret Mitchell, Piero Molino,
Graham Neubig, Joakim Nivre, Brendan O’Connor, Nikos Pappas, Fernando Pereira, Barbara
Plank, Ana-Maria Popescu, Delip Rao, Tim Rocktäschel, Dan Roth, Alexander Rush, Naomi
Saphra, Djamé Seddah, Erel Segal-Halevi, Avi Shmidman, Shaltiel Shmidman, Noah Smith,
Anders Søgaard, Abe Stanway, Emma Strubell, Sandeep Subramanian, Liling Tan, Reut Tsarfaty,
Peter Turney, Tim Vieira, Oriol Vinyals, Andreas Vlachos, Wenpeng Yin, and Torsten Zesch.

e list excludes, of course, the very many researchers I’ve communicated with through
their academic writings on the topic.

e book also benefited a lot from—and was shaped by—my interaction with the Natural
Language ProcessingGroup at Bar-IlanUniversity (and its soft extensions): Yossi Adi, RoeeAha-
roni, Oded Avraham, Ido Dagan, Jessica Ficler, Jacob Goldberger, Hila Gonen, Joseph Keshet,
Eliyahu Kiperwasser, Ron Konigsberg, Omer Levy, Oren Melamud, Gabriel Stanovsky, Ori
Shapira, Micah Shlain, Vered Shwartz, Hillel Taub-Tabib, and Rachel Wities. Most of them
belong in both lists, but I tried to keep things short.

e anonymous reviewers of the book and the survey paper—while unnamed (and some-
times annoying)—provided a solid set of comments, suggestions, and corrections, which I can
safely say dramatically improved many aspects of the final product. anks, whoever you are!

xxii ACKNOWLEDGMENTS

And thanks also to Graeme Hirst, Michael Morgan, Samantha Draper, and C.L. Tondo for
orchestrating the effort.

As usual, all mistakes are of course my own. Do let me know if you find any, though, and
be listed in the next edition if one is ever made.

Finally, I would like to thank my wife, Noa, who was patient and supportive when I disap-
peared into writing sprees, my parents Esther and Avner and brother Nadav who were in many
cases more excited about the idea of me writing a book than I was, and the staff at e Streets Cafe
(King George branch) and Shne’or Cafe who kept me well fed and served me drinks throughout
the writing process, with only very minimal distractions.

Yoav Goldberg
March 2017

1

C H A P T E R 1

Introduction
1.1 THE CHALLENGES OF NATURAL LANGUAGE

PROCESSING
Natural language processing (NLP) is the field of designing methods and algorithms that take
as input or produce as output unstructured, natural language data. Human language is highly
ambiguous (consider the sentence I ate pizza with friends, and compare it to I ate pizza with
olives), and also highly variable (the coremessage of I ate pizzawith friends can also be expressed as
friends and I shared some pizza). It is also ever changing and evolving. People are great at producing
language and understanding language, and are capable of expressing, perceiving, and interpreting
very elaborate and nuanced meanings. At the same time, while we humans are great users of
language, we are also very poor at formally understanding and describing the rules that govern
language.

Understanding and producing language using computers is thus highly challenging. Indeed,
the best known set of methods for dealing with language data are using supervised machine learn-
ing algorithms, that attempt to infer usage patterns and regularities from a set of pre-annotated
input and output pairs. Consider, for example, the task of classifying a document into one of four
categories: S, P, G, and E. Obviously, the words in the documents
provide very strong hints, but which words provide what hints? Writing up rules for this task is
rather challenging. However, readers can easily categorize a document into its topic, and then,
based on a few hundred human-categorized examples in each category, let a supervised machine
learning algorithm come up with the patterns of word usage that help categorize the documents.
Machine learning methods excel at problem domains where a good set of rules is very hard to
define but annotating the expected output for a given input is relatively simple.

Besides the challenges of dealing with ambiguous and variable inputs in a system with ill-
defined and unspecified set of rules, natural language exhibits an additional set of properties that
make it even more challenging for computational approaches, including machine learning: it is
discrete, compositional, and sparse.

Language is symbolic and discrete. e basic elements of written language are characters.
Characters form words that in turn denote objects, concepts, events, actions, and ideas. Both
characters and words are discrete symbols: words such as “hamburger” or “pizza” each evoke in us
a certain mental representations, but they are also distinct symbols, whose meaning is external to
them and left to be interpreted in our heads. ere is no inherent relation between “hamburger”
and “pizza” that can be inferred from the symbols themselves, or from the individual letters they

2 1. INTRODUCTION

are made of. Compare that to concepts such as color, prevalent in machine vision, or acoustic
signals: these concepts are continuous, allowing, for example, to move from a colorful image to a
gray-scale one using a simple mathematical operation, or to compare two different colors based
on inherent properties such as hue and intensity. is cannot be easily done with words—there
is no simple operation that will allow us to move from the word “red” to the word “pink” without
using a large lookup table or a dictionary.

Language is also compositional: letters form words, and words form phrases and sentences.
e meaning of a phrase can be larger than the meaning of the individual words that comprise it,
and follows a set of intricate rules. In order to interpret a text, we thus need to work beyond the
level of letters and words, and look at long sequences of words such as sentences, or even complete
documents.

e combination of the above properties leads to data sparseness. e way in which words
(discrete symbols) can be combined to form meanings is practically infinite. e number of possi-
ble valid sentences is tremendous: we could never hope to enumerate all of them. Open a random
book, and the vast majority of sentences within it you have not seen or heard before. Moreover,
it is likely that many sequences of four-words that appear in the book are also novel to you. If you
were to look at a newspaper from just 10 years ago, or imagine one 10 years in the future, many
of the words, in particular names of persons, brands, and corporations, but also slang words and
technical terms, will be novel as well. ere is no clear way of generalizing from one sentence to
another, or defining the similarity between sentences, that does not depend on their meaning—
which is unobserved to us. is is very challenging when we come to learn from examples: even
with a huge example set we are very likely to observe events that never occurred in the example
set, and that are very different than all the examples that did occur in it.

1.2 NEURAL NETWORKS AND DEEP LEARNING
Deep learning is a branch of machine learning. It is a re-branded name for neural networks—a
family of learning techniques that was historically inspired by the way computation works in the
brain, and which can be characterized as learning of parameterized differentiable mathematical
functions.¹ e name deep-learning stems from the fact that many layers of these differentiable
function are often chained together.

While all of machine learning can be characterized as learning to make predictions based
on past observations, deep learning approaches work by learning to not only predict but also to
correctly represent the data, such that it is suitable for prediction. Given a large set of desired input-
output mapping, deep learning approaches work by feeding the data into a network that produces
successive transformations of the input data until a final transformation predicts the output. e
transformations produced by the network are learned from the given input-output mappings,
such that each transformation makes it easier to relate the data to the desired label.

¹In this book we take the mathematical view rather than the brain-inspired view.

1.3. DEEP LEARNING IN NLP 3

While the human designer is in charge of designing the network architecture and training
regime, providing the network with a proper set of input-output examples, and encoding the input
data in a suitable way, a lot of the heavy-lifting of learning the correct representation is performed
automatically by the network, supported by the network’s architecture.

1.3 DEEP LEARNING IN NLP
Neural networks provide a powerful learning machinery that is very appealing for use in natural
language problems. A major component in neural networks for language is the use of an embed-
ding layer, a mapping of discrete symbols to continuous vectors in a relatively low dimensional
space. When embedding words, they transform from being isolated distinct symbols into math-
ematical objects that can be operated on. In particular, distance between vectors can be equated
to distance between words, making it easier to generalize the behavior from one word to another.
is representation of words as vectors is learned by the network as part of the training process.
Going up the hierarchy, the network also learns to combine word vectors in a way that is useful for
prediction. is capability alleviates to some extent the discreteness and data-sparsity problems.

ere are two major kinds of neural network architectures, that can be combined in various
ways: feed-forward networks and recurrent/recursive networks.

Feed-forward networks, in particular multi-layer perceptrons (MLPs), allow to work with
fixed sized inputs, or with variable length inputs in which we can disregard the order of the ele-
ments. When feeding the network with a set of input components, it learns to combine them in
a meaningful way. MLPs can be used whenever a linear model was previously used. e nonlin-
earity of the network, as well as the ability to easily integrate pre-trained word embeddings, often
lead to superior classification accuracy.

Convolutional feed-forward networks are specialized architectures that excel at extracting
local patterns in the data: they are fed arbitrarily sized inputs, and are capable of extracting mean-
ingful local patterns that are sensitive to word order, regardless of where they appear in the input.
ese work very well for identifying indicative phrases or idioms of up to a fixed length in long
sentences or documents.

Recurrent neural networks (RNNs) are specialized models for sequential data. ese are
network components that take as input a sequence of items, and produce a fixed size vector that
summarizes that sequence. As “summarizing a sequence” means different things for different tasks
(i.e., the information needed to answer a question about the sentiment of a sentence is different
from the information needed to answer a question about its grammaticality), recurrent networks
are rarely used as standalone component, and their power is in being trainable components that
can be fed into other network components, and trained to work in tandem with them. For ex-
ample, the output of a recurrent network can be fed into a feed-forward network that will try
to predict some value. e recurrent network is used as an input-transformer that is trained to
produce informative representations for the feed-forward network that will operate on top of it.
Recurrent networks are very impressive models for sequences, and are arguably the most exciting

4 1. INTRODUCTION

offer of neural networks for language processing. ey allow abandoning the markov assumption
that was prevalent in NLP for decades, and designing models that can condition on entire sen-
tences, while taking word order into account when it is needed, and not suffering much from
statistical estimation problems stemming from data sparsity. is capability leads to impressive
gains in language-modeling, the task of predicting the probability of the next word in a sequence
(or, equivalently, the probability of a sequence), which is a cornerstone of many NLP applications.
Recursive networks extend recurrent networks from sequences to trees.

Many of the problems in natural language are structured, requiring the production of com-
plex output structures such as sequences or trees, and neural network models can accommodate
that need as well, either by adapting known structured-prediction algorithms for linear models,
or by using novel architectures such as sequence-to-sequence (encoder-decoder) models, which
we refer to in this book as conditioned-generation models. Such models are at the heart of state-
of-the-art machine translation.

Finally, many language prediction tasks are related to each other, in the sense that knowing
to perform one of them will help in learning to perform the others. In addition, while we may
have a shortage of supervised (labeled) training data, we have ample supply of raw text (unlabeled
data). Can we learn from related tasks and un-annotated data? Neural network approaches pro-
vide exciting opportunities for both MTL (learning from related problems) and semi-supervised
learning (learning from external, unannotated data).

1.3.1 SUCCESS STORIES
Fully connected feed-forward neural networks (MLPs) can, for themost part, be used as a drop-in
replacement wherever a linear learner is used. is includes binary and multi-class classification
problems, as well as more complex structured prediction problems. e nonlinearity of the net-
work, as well as the ability to easily integrate pre-trained word embeddings, often lead to superior
classification accuracy. A series of works² managed to obtain improved syntactic parsing results
by simply replacing the linear model of a parser with a fully connected feed-forward network.
Straightforward applications of a feed-forward network as a classifier replacement (usually cou-
pled with the use of pre-trained word vectors) provide benefits for many language tasks, including
the very well basic task of language modeling³ CCG supertagging,⁴ dialog state tracking,⁵ and
pre-ordering for statistical machine translation.⁶ Iyyer et al. [2015] demonstrate that multi-layer
feed-forward networks can provide competitive results on sentiment classification and factoid
question answering. Zhou et al. [2015] and Andor et al. [2016] integrate them in a beam-search
structured-prediction system, achieving stellar accuracies on syntactic parsing, sequence tagging
and other tasks.

²[Chen and Manning, 2014, Durrett and Klein, 2015, Pei et al., 2015, Weiss et al., 2015]
³See Chapter 9, as well as Bengio et al. [2003], Vaswani et al. [2013].
⁴[Lewis and Steedman, 2014]
⁵[Henderson et al., 2013]
⁶[de Gispert et al., 2015]

1.3. DEEP LEARNING IN NLP 5

Networks with convolutional and pooling layers are useful for classification tasks in which
we expect to find strong local clues regarding class membership, but these clues can appear in
different places in the input. For example, in a document classification task, a single key phrase
(or an ngram) can help in determining the topic of the document [Johnson and Zhang, 2015].
We would like to learn that certain sequences of words are good indicators of the topic, and do not
necessarily care where they appear in the document. Convolutional and pooling layers allow the
model to learn to find such local indicators, regardless of their position. Convolutional and pool-
ing architecture show promising results on many tasks, including document classification,⁷ short-
text categorization,⁸ sentiment classification,⁹ relation-type classification between entities,¹⁰ event
detection,¹¹ paraphrase identification,¹² semantic role labeling,¹³ question answering,¹⁴ predict-
ing box-office revenues of movies based on critic reviews,¹⁵ modeling text interestingness,¹⁶ and
modeling the relation between character-sequences and part-of-speech tags.¹⁷

In natural language we often work with structured data of arbitrary sizes, such as sequences
and trees. We would like to be able to capture regularities in such structures, or to model similari-
ties between such structures. Recurrent and recursive architectures allow working with sequences
and trees while preserving a lot of the structural information. Recurrent networks [Elman, 1990]
are designed to model sequences, while recursive networks [Goller and Küchler, 1996] are gen-
eralizations of recurrent networks that can handle trees. Recurrent models have been shown to
produce very strong results for language modeling,¹⁸ as well as for sequence tagging,¹⁹ machine
translation,²⁰ parsing,²¹ and many other tasks including noisy text normalization,²² dialog state
tracking,²³ response generation,²⁴ and modeling the relation between character sequences and
part-of-speech tags.²⁵

⁷[Johnson and Zhang, 2015]
⁸[Wang et al., 2015a]
⁹[Kalchbrenner et al., 2014, Kim, 2014]
¹⁰[dos Santos et al., 2015, Zeng et al., 2014]
¹¹[Chen et al., 2015, Nguyen and Grishman, 2015]
¹²[Yin and Schütze, 2015]
¹³[Collobert et al., 2011]
¹⁴[Dong et al., 2015]
¹⁵[Bitvai and Cohn, 2015]
¹⁶[Gao et al., 2014]
¹⁷[dos Santos and Zadrozny, 2014]
¹⁸Some notable works are Adel et al. [2013], Auli and Gao [2014], Auli et al. [2013], Duh et al. [2013], Jozefowicz et al. [2016],
Mikolov [2012], Mikolov et al. [2010, 2011].

¹⁹[Irsoy and Cardie, 2014, Ling et al., 2015b, Xu et al., 2015]
²⁰[Cho et al., 2014b, Sundermeyer et al., 2014, Sutskever et al., 2014, Tamura et al., 2014]
²¹[Dyer et al., 2015, Kiperwasser and Goldberg, 2016b, Watanabe and Sumita, 2015]
²²[Chrupala, 2014]
²³[Mrkšić et al., 2015]
²⁴[Kannan et al., 2016, Sordoni et al., 2015]
²⁵[Ling et al., 2015b]

6 1. INTRODUCTION

Recursive models were shown to produce state-of-the-art or near state-of-the-art results
for constituency²⁶ and dependency²⁷ parse re-ranking, discourse parsing,²⁸ semantic relation clas-
sification,²⁹ political ideology detection based on parse trees,³⁰ sentiment classification,³¹ target-
dependent sentiment classification,³² and question answering.³³

1.4 COVERAGE AND ORGANIZATION
e book consists of four parts. Part I introduces the basic learning machinery we’ll be using
throughout the book: supervised learning, MLPs, gradient-based training, and the computation-
graph abstraction for implementing and training neural networks. Part II connects the machinery
introduced in the first part with language data. It introduces the main sources of information that
are available when working with language data, and explains how to integrate them with the
neural networks machinery. It also discusses word-embedding algorithms and the distributional
hypothesis, and feed-forward approaches to language modeling. Part III deals with specialized
architectures and their applications to language data: 1D convolutional networks for working
with ngrams, and RNNs for modeling sequences and stacks. RNNs are the main innovation of
the application of neural networks to language data, and most of Part III is devoted to them,
including the powerful conditioned-generation framework they facilitate, and attention-based
models. Part IV is a collection of various advanced topics: recursive networks for modeling trees,
structured prediction models, and multi-task learning.

Part I, covering the basics of neural networks, consists of four chapters. Chapter 2 in-
troduces the basic concepts of supervised machine learning, parameterized functions, linear and
log-linear models, regularization and loss functions, training as optimization, and gradient-based
training methods. It starts from the ground up, and provides the needed material for the following
chapters. Readers familiar with basic learning theory and gradient-based learning may consider
skipping this chapter. Chapter 3 spells out the major limitation of linear models, motivates the
need for nonlinear models, and lays the ground and motivation for multi-layer neural networks.
Chapter 4 introduces feed-forward neural networks and the MLPs. It discusses the definition of
multi-layer networks, their theoretical power, and common subcomponents such as nonlinearities
and loss functions. Chapter 5 deals with neural network training. It introduces the computation-
graph abstraction that allows for automatic gradient computations for arbitrary networks (the
back-propagation algorithm), and provides several important tips and tricks for effective network
training.

²⁶[Socher et al., 2013a]
²⁷[Le and Zuidema, 2014, Zhu et al., 2015a]
²⁸[Li et al., 2014]
²⁹[Hashimoto et al., 2013, Liu et al., 2015]
³⁰[Iyyer et al., 2014b]
³¹[Hermann and Blunsom, 2013, Socher et al., 2013b]
³²[Dong et al., 2014]
³³[Iyyer et al., 2014a]

1.4. COVERAGE AND ORGANIZATION 7

Part II introducing language data, consists of seven chapters. Chapter 6 presents a typol-
ogy of common language-processing problems, and discusses the available sources of information
(features) available for us when using language data. Chapter 7 provides concrete case studies,
showing how the features described in the previous chapter are used for various natural language
tasks. Readers familiar with language processing can skip these two chapters. Chapter 8 connects
the material of Chapters 6 and 7 with neural networks, and discusses the various ways of encoding
language-based features as inputs for neural networks. Chapter 9 introduces the language model-
ing task, and the feed-forward neural language model architecture. is also paves the way for dis-
cussing pre-trained word embeddings in the following chapters. Chapter 10 discusses distributed
and distributional approaches to word-meaning representations. It introduces the word-context
matrix approach to distributional semantics, as well as neural language-modeling inspired word-
embedding algorithms, such as GV and W2V, and discusses the connection between
them and the distributional methods. Chapter 11 deals with using word embeddings outside of
the context of neural networks. Finally, Chapter 12 presents a case study of a task-specific feed-
forward network that is tailored for the Natural Language Inference task.

Part III introducing the specialized convolutional and recurrent architectures, consists of
five chapters. Chapter 13 deals with convolutional networks, that are specialized at learning in-
formative ngram patterns. e alternative hash-kernel technique is also discussed. e rest of
this part, Chapters 14–17, is devoted to RNNs. Chapter 14 describes the RNN abstraction for
modeling sequences and stacks. Chapter 15 describes concrete instantiations of RNNs, including
the Simple RNN (also known as Elman RNNs) and gated architectures such as the Long Short-
term Memory (LSTM) and the Gated Recurrent Unit (GRU). Chapter 16 provides examples
of modeling with the RNN abstraction, showing their use within concrete applications. Finally,
Chapter 17 introduces the conditioned-generation framework, which is the main modeling tech-
nique behind state-of-the-art machine translation, as well as unsupervised sentence modeling and
many other innovative applications.

Part IV is a mix of advanced and non-core topics, and consists of three chapters. Chapter 18
introduces tree-structured recursive networks for modeling trees. While very appealing, this fam-
ily of models is still in research stage, and is yet to show a convincing success story. Nonetheless,
it is an important family of models to know for researchers who aim to push modeling techniques
beyond the state-of-the-art. Readers who are mostly interested in mature and robust techniques
can safely skip this chapter. Chapter 19 deals with structured prediction. It is a rather techni-
cal chapter. Readers who are particularly interested in structured prediction, or who are already
familiar with structured prediction techniques for linear models or for language processing, will
likely appreciate the material. Others may rather safely skip it. Finally, Chapter 20 presents multi-
task and semi-supervised learning. Neural networks provide ample opportunities for multi-task
and semi-supervised learning. ese are important techniques, that are still at the research stage.
However, the existing techniques are relatively easy to implement, and do provide real gains. e
chapter is not technically challenging, and is recommended to all readers.

8 1. INTRODUCTION

Dependencies For the most part, chapters, depend on the chapters that precede them. An ex-
ception are the first two chapters of Part II, which do not depend on material in previous chapters
and can be read in any order. Some chapters and sections can be skipped without impacting the
understanding of other concepts or material. ese include Section 10.4 and Chapter 11 that
deal with the details of word embedding algorithms and the use of word embeddings outside of
neural networks; Chapter 12, describing a specific architecture for attacking the Stanford Natural
Language Inference (SNLI) dataset; and Chapter 13 describing convolutional networks. Within
the sequence on recurrent networks, Chapter 15, dealing with the details of specific architectures,
can also be relatively safely skipped. e chapters in Part IV are for the most part independent of
each other, and can be either skipped or read in any order.

1.5 WHAT’S NOT COVERED
e focus is on applications of neural networks to language processing tasks. However, some sub-
areas of language processing with neural networks were deliberately left out of scope of this book.
Specifically, I focus on processing written language, and do not cover working with speech data
or acoustic signals. Within written language, I remain relatively close to the lower level, relatively
well-defined tasks, and do not cover areas such as dialog systems, document summarization, or
question answering, which I consider to be vastly open problems. While the described techniques
can be used to achieve progress on these tasks, I do not provide examples or explicitly discuss these
tasks directly. Semantic parsing is similarly out of scope. Multi-modal applications, connecting
language data with other modalities such as vision or databases are only very briefly mentioned.
Finally, the discussion is mostly English-centric, and languages with richer morphological sys-
tems and fewer computational resources are only very briefly discussed.

Some important basics are also not discussed. Specifically, two crucial aspects of good work in
language processing are proper evaluation and data annotation. Both of these topics are left outside
the scope of this book, but the reader should be aware of their existence.

Proper evaluation includes the choice of the right metrics for evaluating performance on a
given task, best practices, fair comparison with other work, performing error analysis, and assess-
ing statistical significance.

Data annotation is the bread-and-butter of NLP systems. Without data, we cannot train
supervised models. As researchers, we very often just use “standard” annotated data produced by
someone else. It is still important to know the source of the data, and consider the implications
resulting from its creation process. Data annotation is a very vast topic, including proper for-
mulation of the annotation task; developing the annotation guidelines; deciding on the source
of annotated data, its coverage and class proportions, good train-test splits; and working with
annotators, consolidating decisions, validating quality of annotators and annotation, and various
similar topics.

1.6. A NOTE ON TERMINOLOGY 9

1.6 A NOTE ON TERMINOLOGY
e word “feature” is used to refer to a concrete, linguistic input such as a word, a suffix, or a part-
of-speech tag. For example, in a first-order part-of-speech tagger, the features might be “current
word, previous word, next word, previous part of speech.” e term “input vector” is used to refer
to the actual input that is fed to the neural network classifier. Similarly, “input vector entry” refers
to a specific value of the input. is is in contrast to a lot of the neural networks literature in
which the word “feature” is overloaded between the two uses, and is used primarily to refer to an
input-vector entry.

1.7 MATHEMATICAL NOTATION
We use bold uppercase letters to represent matrices (X , Y , Z), and bold lowercase letters to
represent vectors (b). When there are series of related matrices and vectors (for example, where
each matrix corresponds to a different layer in the network), superscript indices are used (W 1,
W 2). For the rare cases in which we want indicate the power of a matrix or a vector, a pair of
brackets is added around the item to be exponentiated: .W /2; .W 3/2. We use Œ� as the index
operator of vectors and matrices: bŒi� is the i th element of vector b, and W Œi;j � is the element
in the i th column and j th row of matrix W . When unambiguous, we sometimes adopt the
more standard mathematical notation and use bi to indicate the i th element of vector b, and
similarly wi;j for elements of a matrix W . We use � to denote the dot-product operator: w � v DP

i wivi D
P

i wŒi�vŒi�. We use x1Wn to indicate a sequence of vectors x1; : : : ; xn, and similarly
x1Wn is the sequence of items x1; : : : ; xn. We use xnW1 to indicate the reverse sequence. x1WnŒi � D

xi , xnW1Œi � D xn�iC1. We use Œv1I v2� to denote vector concatenation.
While somewhat unorthodox, unless otherwise stated, vectors are assumed to be rowvec-

tors.e choice to use row vectors, which are rightmultiplied bymatrices (xW C b), is somewhat
non standard—a lot of the neural networks literature use column vectors that are left multiplied
by matrices (W x C b). We trust the reader to be able to adapt to the column vectors notation
when reading the literature.³⁴

³⁴e choice to use the row vectors notation was inspired by the following benefits: it matches the way input vectors and network
diagrams are often drawn in the literature; it makes the hierarchical/layered structure of the network more transparent and
puts the input as the left-most variable rather than being nested; it results in fully connected layer dimensions being din � dout
rather than dout � din; and it maps better to the way networks are implemented in code using matrix libraries such as numpy.

PART I

Supervised Classification and
Feed-forward Neural Networks

13

C H A P T E R 2

Learning Basics
and Linear Models

Neural networks, the topic of this book, are a class of supervised machine learning algorithms.
is chapter provides a quick introduction to supervised machine learning terminology and

practices, and introduces linear and log-linear models for binary and multi-class classification.
e chapter also sets the stage and notation for later chapters. Readers who are familiar with

linear models can skip ahead to the next chapters, but may also benefit from reading Sections 2.4
and 2.5.

Supervisedmachine learning theory and linear models are very large topics, and this chapter
is far from being comprehensive. For a more complete treatment the reader is referred to texts
such as Daumé III [2015], Shalev-Shwartz and Ben-David [2014], and Mohri et al. [2012].

2.1 SUPERVISED LEARNING AND PARAMETERIZED
FUNCTIONS

e essence of supervised machine learning is the creation of mechanisms that can look at exam-
ples and produce generalizations. More concretely, rather than designing an algorithm to perform
a task (“distinguish spam from non-spam email”), we design an algorithm whose input is a set
of labeled examples (“is pile of emails are spam. is other pile of emails are not spam.”), and
its output is a function (or a program) that receives an instance (an email) and produces the de-
sired label (spam or not-spam). It is expected that the resulting function will produce correct label
predictions also for instances it has not seen during training.

As searching over the set of all possible programs (or all possible functions) is a very hard
(and rather ill-defined) problem, we often restrict ourselves to search over specific families of
functions, e.g., the space of all linear functions with din inputs and dout outputs, or the space of all
decision trees over din variables. Such families of functions are called hypothesis classes. By restrict-
ing ourselves to a specific hypothesis class, we are injecting the learner with inductive bias—a set
of assumptions about the form of the desired solution, as well as facilitating efficient procedures
for searching for the solution. For a broad and readable overview of the main families of learning
algorithms and the assumptions behind them, see the book by Domingos [2015].

e hypothesis class also determines what can and cannot be represented by the learner.
One common hypothesis class is that of high-dimensional linear function, i.e., functions of the

14 2. LEARNING BASICS AND LINEAR MODELS

form:¹
f .x/ D x �W C b (2.1)

x 2 Rdin W 2 Rdin�dout b 2 Rdout :

Here, the vector x is the input to the function, while the matrix W and the vector b are
the parameters. e goal of the learner is to set the values of the parameters W and b such that
the function behaves as intended on a collection of input values x1Wk D x1; : : : ; xk and the corre-
sponding desired outputs y1Wk D y i ; : : : ; yk . e task of searching over the space of functions is
thus reduced to one of searching over the space of parameters. It is common to refer to parameters
of the function as ‚. For the linear model case, ‚ D W ; b. In some cases we want the notation
to make the parameterization explicit, in which case we include the parameters in the function’s
definition: f .xIW ; b/ D x �W C b.

As we will see in the coming chapters, the hypothesis class of linear functions is rather
restricted, and there are many functions that it cannot represent (indeed, it is limited to linear
relations). In contrast, feed-forward neural networks with hidden layers, to be discussed in Chap-
ter 4, are also parameterized functions, but constitute a very strong hypothesis class—they are
universal approximators, capable of representing any Borel-measurable function.² However, while
restricted, linear models have several desired properties: they are easy and efficient to train, they
often result in convex optimization objectives, the trained models are somewhat interpretable,
and they are often very effective in practice. Linear and log-linear models were the dominant
approaches in statistical NLP for over a decade. Moreover, they serve as the basic building blocks
for the more powerful nonlinear feed-forward networks which will be discussed in later chapters.

2.2 TRAIN, TEST, AND VALIDATION SETS
Before delving into the details of linear models, let’s reconsider the general setup of the machine
learning problem. We are faced with a dataset of k input examples x1Wk and their corresponding
gold labels y1Wk , and our goal is to produce a function f .x/ that correctly maps inputs x to
outputs Oy , as evidenced by the training set. How do we know that the produced function f ./ is
indeed a good one? One could run the training examples x1Wk through f ./, record the answers
Oy1Wk , compare them to the expected labels y1Wk , and measure the accuracy. However, this process
will not be very informative—our main concern is the ability of f ./ to generalize well to unseen
examples. A function f ./ that is implemented as a lookup table, that is, looking for the input x

in its memory and returning the corresponding value y for instances is has seen and a random
value otherwise, will get a perfect score on this test, yet is clearly not a good classification function
as it has zero generalization ability. We rather have a function f ./ that gets some of the training
examples wrong, providing that it will get unseen examples correctly.

¹As discussed in Section 1.7. is book takes a somewhat un-orthodox approach and assumes vectors are row vectors rather
than column vectors.
²See further discussion in Section 4.3.

2.2. TRAIN, TEST, AND VALIDATION SETS 15

Leave-one out Wemust assess the trained function’s accuracy on instances it has not seen during
training. One solution is to perform leave-one-out cross-validation: train k functions f1Wk , each
time leaving out a different input example xi , and evaluating the resulting function fi ./ on its
ability to predict xi . en train another function f ./ on the entire trainings set x1Wk . Assuming
that the training set is a representative sample of the population, this percentage of functions fi ./

that produced correct prediction on the left-out samples is a good approximation of the accuracy
of f ./ on new inputs. However, this process is very costly in terms of computation time, and is
used only in cases where the number of annotated examples k is very small (less than a hundred
or so). In language processing tasks, we very often encounter training sets with well over 105

examples.

Held-out set A more efficient solution in terms of computation time is to split the training set
into two subsets, say in a 80%/20% split, train a model on the larger subset (the training set), and
test its accuracy on the smaller subset (the held-out set). is will give us a reasonable estimate on
the accuracy of the trained function, or at least allow us to compare the quality of different trained
models. However, it is somewhat wasteful in terms training samples. One could then re-train a
model on the entire set. However, as the model is trained on substantially more data, the error
estimates of the model trained on less data may not be accurate. is is generally a good problem
to have, as more training data is likely to result in better rather than worse predictors.³

Some care must be taken when performing the split—in general it is better to shuffle the
examples prior to splitting them, to ensure a balanced distribution of examples between the train-
ing and held-out sets (for example, you want the proportion of gold labels in the two sets to be
similar). However, sometimes a random split is not a good option: consider the case where your
input are news articles collected over several months, and your model is expected to provide pre-
dictions for new stories. Here, a random split will over-estimate the model’s quality: the training
and held-out examples will be from the same time period, and hence on more similar stories,
which will not be the case in practice. In such cases, you want to ensure that the training set has
older news stories and the held-out set newer ones—to be as similar as possible to how the trained
model will be used in practice.

A three-way split e split into train and held-out sets works well if you train a single model
and wants to assess its quality. However, in practice you often train several models, compare their
quality, and select the best one. Here, the two-way split approach is insufficient—selecting the
best model according to the held-out set’s accuracy will result in an overly optimistic estimate of
the model’s quality. You don’t know if the chosen settings of the final classifier are good in general,
or are just good for the particular examples in the held-out sets. e problem will be even worse if
you perform error analysis based on the held-out set, and change the features or the architecture of
the model based on the observed errors. You don’t know if your improvements based on the held-
³Note, however, that some setting in the training procedure, in particular the learning rate and regularization weight may be
sensitive to the training set size, and tuning them based on some data and then re-training a model with the same settings on
larger data may produce sub-optimal results.

16 2. LEARNING BASICS AND LINEAR MODELS

out sets will carry over to new instances. e accepted methodology is to use a three-way split of
the data into train, validation (also called development), and test sets. is gives you two held-out
sets: a validation set (also called development set), and a test set. All the experiments, tweaks, error
analysis, and model selection should be performed based on the validation set. en, a single run
of the final model over the test set will give a good estimate of its expected quality on unseen
examples. It is important to keep the test set as pristine as possible, running as few experiments
as possible on it. Some even advocate that you should not even look at the examples in the test
set, so as to not bias the way you design your model.

2.3 LINEAR MODELS
Now that we have established some methodology, we return to describe linear models for binary
and multi-class classification.

2.3.1 BINARY CLASSIFICATION
In binary classification problems we have a single output, and thus use a restricted version of
Equation (2.1) in which dout D 1, making w a vector and b a scalar.

f .x/ D x �wC b: (2.2)

e range of the linear function in Equation (2.2) is Œ�1;C1�. In order to use it for
binary classification, it is common to pass the output of f .x/ through the sign function, mapping
negative values to �1 (the negative class) and non-negative values to C1 (the positive class).

Consider the task of predicting which of two neighborhoods an apartment is located at,
based on the apartment’s price and size. Figure 2.1 shows a 2D plot of some apartments, where
the x-axis denotes the monthly rent price in USD, while the y-axis is the size in square feet.
e blue circles are for Dupont Circle, DC and the green crosses are in Fairfax, VA. It is evident
from the plot that we can separate the two neighborhoods using a straight line—apartments in
Dupont Circle tend to bemore expensive than apartments in Fairfax of the same size.⁴e dataset
is linearly separable: the two classes can be separated by a straight line.

Each data-point (an apartment) can be represented as a 2-dimensional (2D) vector x where
xŒ0� is the apartment’s size and xŒ1� is its price. We then get the following linear model:

Oy D sign.f .x// D sign.x �wC b/

D sign.size � w1 C price � w2 C b/;

where � is the dot-product operation, b and w D Œw1; w2� are free parameters, and we predict
Fairfax if Oy � 0 and Dupont Circle otherwise. e goal of learning is setting the values of w1,

⁴Note that looking at either size or price alone would not allow us to cleanly separate the two groups.

2.3. LINEAR MODELS 17

2500

2000

1500

1000

500

0
1000 2000 3000 4000 5000

Price

S
iz
e

Figure 2.1: Housing data: rent price in USD vs. size in square ft. Data source: Craigslist ads, collected
from June 7–15, 2015.

w2, and b such that the predictions are correct for all data-points we observe.⁵ We will discuss
learning in Section 2.7 but for now consider that we expect the learning procedure to set a high
value to w1 and a low value to w2. Once the model is trained, we can classify new data-points by
feeding them into this equation.

It is sometimes not possible to separate the data-points using a straight line (or, in higher di-
mensions, a linear hyperplane)—such datasets are said to be nonlinearly separable, and are beyond
the hypothesis class of linear classifiers. e solution would be to either move to a higher dimen-
sion (add more features), move to a richer hypothesis class, or allow for some mis-classification.⁶

⁵Geometrically, for a given w the points x � w C b D 0 define a hyperplane (which in two dimensions corresponds to a line)
that separates the space into two regions. e goal of learning is then finding a hyperplane such that the classification induced
by it is correct.
⁶Misclassifying some of the examples is sometimes a good idea. For example, if we have reason to believe some of the data-
points are outliers—examples that belong to one class, but are labeled by mistake as belonging to the other class.

18 2. LEARNING BASICS AND LINEAR MODELS

..

Feature Representations In the example above, each data-point was a pair of size and price
measurements. Each of these properties is considered a feature by which we classify the data-
point. is is very convenient, but in most cases the data-points are not given to us directly
as lists of features, but as real-world objects. For example, in the apartments example we
may be given a list of apartments to classify. We then need to make a concious decision and
select the measurable properties of the apartments that we believe will be useful features
for the classification task at hand. Here, it proved effective to focus on the price and the
size. We could also look at additional properties, such as the number of rooms, the height
of the ceiling, the type of floor, the geo-location coordinates, and so on. After deciding on
a set of features, we create a feature extraction function that maps a real world object (i.e.,
an apartment) to a vector of measurable quantities (price and size) which can be used as
inputs to our models. e choice of the features is crucial to the success of the classification
accuracy, and is driven by the informativeness of the features, and their availability to us (the
geo-location coordinates are much better predictors of the neighborhood than the price and
size, but perhaps we only observe listings of past transactions, and do not have access to the
geo-location information). When we have two features, it is easy to plot the data and see the
underlying structures. However, as we see in the next example, we often use many more than
just two features, making plotting and precise reasoning impractical.

A central part in the design of linear models, which we mostly gloss over in this text, is
the design of the feature function (so called feature engineering). One of the promises of deep
learning is that it vastly simplifies the feature-engineering process by allowing the model
designer to specify a small set of core, basic, or “natural” features, and letting the trainable
neural network architecture combine them into more meaningful higher-level features, or
representations. However, one still needs to specify a suitable set of core features, and tie
them to a suitable architecture. We discuss common features for textual data in Chapters 6
and 7.

We usually have many more than two features. Moving to a language setup, consider the
task of distinguishing documents written in English from documents written in German. It turns
out that letter frequencies make for quite good predictors (features) for this task. Even more
informative are counts of letter bigrams, i.e., pairs of consecutive letters.⁷ Assuming we have an
alphabet of 28 letters (a–z, space, and a special symbol for all other characters including digits,
punctuations, etc.) we represent a document as a 28 � 28 dimensional vector x 2 R784, where
each entry xŒi� represents a count of a particular letter combination in the document, normalized
by the document’s length. For example, denoting by xab the entry of x corresponding to the

⁷While one may think that words will also be good predictors, letters, or letter-bigrams are far more robust: we are likely to
encounter a new document without any of the words we observed in the training set, while a document without any of the
distinctive letter-bigrams is significantly less likely.

2.3. LINEAR MODELS 19

letter-bigram ab:

xab D
#ab

jDj
; (2.3)

where #ab is the number of times the bigram ab appears in the document, and jDj is the total
number of bigrams in the document (the document’s length).

_a _d _s _t d_ de
e_ en er ie in n

_
on re t_ th

_a _d _s _t d_ de
e_ en er ie in n

_
on re t_ th

_a _d _s _t d_ de
e_ en er ie in n

_
on re t_ th

_a _d _s _t d_ de
e_ en er ie in n

_
on re t_ th

_a _d _s _t d_ de
e_ en er ie in n

_
on re t_ th

_a _d _s _t d_ de
e_ en er ie in n

_
on re t_ th

_a _d _s _t d_ de
e_ en er ie in n

_
on re t_ th

_a _d _s _t d_ de
e_ en er ie in n

_
on re t_ th

_a _d _s _t d_ de
e_ en er ie in n

_
on re t_ th

_a _d _s _t d_ de
e_ en er ie in n

_
on re t_ th

Figure 2.2: Character-bigram histograms for documents in English (left, blue) and German (right,
green). Underscores denote spaces.

Figure 2.2 shows such bigram histograms for several German and English texts. For
readability, we only show the top frequent character-bigrams and not the entire feature vectors.
On the left, we see the bigrams of the English texts, and on the right of the German ones. ere
are clear patterns in the data, and, given a new item, such as:

_a _d _s _t d_ de
e_ en er ie in n

_
on re t_ th

20 2. LEARNING BASICS AND LINEAR MODELS

you could probably tell that it is more similar to the German group than to the English one.
Note, however, that you couldn’t use a single definite rule such as “if it has th its English” or “if
it has ie its German”: while German texts have considerably less th than English, the th may
and does occur in German texts, and similarly the ie combination does occur in English. e
decision requires weighting different factors relative to each other. Let’s formalize the problem in
a machine-learning setup.

We can again use a linear model:

Oy D sign.f .x// D sign.x �wC b/

D sign.xaa � waa C xab � wab C xac � wac : : :C b/:
(2.4)

A document will be considered English if f .x/ � 0 and as German otherwise. Intuitively,
learning should assign large positive values to w entries associated with letter pairs that are much
more common in English than in German (i.e., th) negative values to letter pairs that are much
more common in German than in English (ie, en), and values around zero to letter pairs that are
either common or rare in both languages.

Note that unlike the 2D case of the housing data (price vs. size), here we cannot easily
visualize the points and the decision boundary, and the geometric intuition is likely much less
clear. In general, it is difficult for most humans to think of the geometries of spaces with more
than three dimensions, and it is advisable to think of linear models in terms of assigning weights
to features, which is easier to imagine and reason about.

2.3.2 LOG-LINEAR BINARY CLASSIFICATION
e output f .x/ is in the range Œ�1;1�, and we map it to one of two classes f�1;C1g using
the sign function. is is a good fit if all we care about is the assigned class. However, we may
be interested also in the confidence of the decision, or the probability that the classifier assigns to
the class. An alternative that facilitates this is to map instead to the range Œ0; 1�, by pushing the
output through a squashing function such as the sigmoid �.x/ D 1

1Ce�x , resulting in:

Oy D �.f .x// D
1

1C e�.x�wCb/
: (2.5)

Figure 2.3 shows a plot of the sigmoid function. It is monotonically increasing, and maps values
to the range Œ0; 1�, with 0 being mapped to 1

2
. When used with a suitable loss function (discussed

in Section 2.7.1) the binary predictions made through the log-linear model can be interpreted as
class membership probability estimates �.f .x// D P. Oy D 1 j x/ of x belonging to the positive
class. We also get P. Oy D 0 j x/ D 1 � P. Oy D 1 j x/ D 1 � �.f .x//. e closer the value is to
0 or 1 the more certain the model is in its class membership prediction, with the value of 0.5
indicating model uncertainty.

2.3. LINEAR MODELS 21

σ(x)
1.0

0.8

0.6

0.4

0.2

0.0
-6 -4 -2 0 2 4 6

Figure 2.3: e sigmoid function �.x/.

2.3.3 MULTI-CLASS CLASSIFICATION
e previous examples were of binary classification, where we had two possible classes. Binary-
classification cases exist, but most classification problems are of a multi-class nature, in which we
should assign an example to one of k different classes. For example, we are given a document and
asked to classify it into one of six possible languages: English, French, German, Italian, Spanish,
Other. A possible solution is to consider six weight vectors wE; wF; : : : and biases, one for each
language, and predict the language resulting in the highest score:⁸

Oy D f .x/ D argmax
L2fE;F;G;I;S;Og

x �wL
C bL: (2.6)

e six sets of parameters wL 2 R784; bL can be arranged as a matrix W 2 R784�6 and
vector b 2 R6, and the equation re-written as:

Oy D f .x/ D x �W C b

prediction D Oy D argmax
i

Oy Œi�:
(2.7)

Here Oy 2 R6 is a vector of the scores assigned by the model to each language, and we again
determine the predicted language by taking the argmax over the entries of Oy .

⁸ere are many ways to model multi-class classification, including binary-to-multi-class reductions. ese are beyond the
scope of this book, but a good overview can be found in Allwein et al. [2000].

22 2. LEARNING BASICS AND LINEAR MODELS

2.4 REPRESENTATIONS

Consider the vector Oy resulting from applying Equation 2.7 of a trained model to a document.
e vector can be considered as a representation of the document, capturing the properties of the
document that are important to us, namely the scores of the different languages. e represen-
tation Oy contains strictly more information than the prediction Oy D argmaxi Oy Œi�: for example,
Oy can be used to distinguish documents in which the main language in German, but which also
contain a sizeable amount of French words. By clustering documents based on their vector rep-
resentations as assigned by the model, we could perhaps discover documents written in regional
dialects, or by multilingual authors.

e vectors x containing the normalized letter-bigram counts for the documents are also
representations of the documents, arguably containing a similar kind of information to the vec-
tors Oy . However, the representations in Oy is more compact (6 entries instead of 784) and more
specialized for the language prediction objective (clustering by the vectors x would likely reveal
document similarities that are not due to a particular mix of languages, but perhaps due to the
document’s topic or writing styles).

e trained matrix W 2 R784�6 can also be considered as containing learned representa-
tions. As demonstrated in Figure 2.4, we can consider two views of W , as rows or as columns.
Each of the 6 columns of W correspond to a particular language, and can be taken to be a 784-
dimensional vector representation of this language in terms of its characteristic letter-bigram pat-
terns. We can then cluster the 6 language vectors according to their similarity. Similarly, each of
the 784 rows of W correspond to a particular letter-bigram, and provide a 6-dimensional vector
representation of that bigram in terms of the languages it prompts.

Representations are central to deep learning. In fact, one could argue that themain power of
deep-learning is the ability to learn good representations. In the linear case, the representations are
interpretable, in the sense that we can assign a meaningful interpretation to each dimension in the
representation vector (e.g., each dimension corresponds to a particular language or letter-bigram).
is is in general not the case—deep learning models often learn a cascade of representations of
the input that build on top of each other, in order to best model the problem at hand, and these
representations are often not interpretable—we do not know which properties of the input they
capture. However, they are still very useful for making predictions. Moreover, at the boundaries of
the model, i.e., at the input and the output, we get representations that correspond to particular
aspects of the input (i.e., a vector representation for each letter-bigram) or the output (i.e., a
vector representation of each of the output classes). We will get back to this in Section 8.3 after
discussing neural networks and encoding categorical features as dense vectors. It is recommended
that you return to this discussion once more after reading that section.

2.5. ONE-HOT AND DENSE VECTOR REPRESENTATIONS 23

OS
p

ItG
r

F
r

E
n

aa

ab

ac

ad

ae

af

ag

ah

zy

zz

(a) (b)

W W

Figure 2.4: Two views of the W matrix. (a) Each column corresponds to a language. (b) Each row
corresponds to a letter bigram.

2.5 ONE-HOT AND DENSE VECTOR REPRESENTATIONS
e input vector x in our language classification example contains the normalized bigram counts
in the document D. is vector can be decomposed into an average of jDj vectors, each corre-
sponding to a particular document position i :

x D
1

jDj

jDjX
iD1

xDŒi� I (2.8)

here, DŒi� is the bigram at document position i , and each vector xDŒi� 2 R784 is a one-hot vector,
in which all entries are zero except the single entry corresponding to the letter bigram DŒi�, which
is 1.

e resulting vector x is commonly referred to as an averaged bag of bigrams (more gen-
erally averaged bag of words, or just bag of words). Bag-of-words (BOW) representations contain
information about the identities of all the “words” (here, bigrams) of the document, without con-
sidering their order. A one-hot representation can be considered as a bag-of-a-single-word.

e view of the rows of the matrix W as representations of the letter bigrams suggests an
alternative way of computing the document representation vector Oy in Equation (2.7). Denoting

24 2. LEARNING BASICS AND LINEAR MODELS

by W DŒi� the row of W corresponding to the bigram DŒi�, we can take the representation y of a
document D to be the average of the representations of the letter-bigrams in the document:

Oy D
1

jDj

jDjX
iD1

W DŒi� : (2.9)

is representation is often called a continuous bag of words (CBOW), as it is composed of a
sum of word representations, where each “word” representation is a low-dimensional, continuous
vector.

We note that Equation (2.9) and the term x �W in Equation (2.7) are equivalent. To see
why, consider:

y D x �W

D

0@ 1

jDj

jDjX
iD1

xDŒi�

1A �W
D

1

jDj

jDjX
iD1

.xDŒi� �W /

D
1

jDj

jDjX
iD1

W DŒi� :

(2.10)

In other words, the continuous-bag-of-words (CBOW) representation can be obtained
either by summing word-representation vectors or by multiplying a bag-of-words vector by a
matrix in which each row corresponds to a dense word representation (such matrices are also
called embedding matrices). We will return to this point in Chapter 8 (in particular Section 8.3)
when discussing feature representations in deep learning models for text.

2.6 LOG-LINEAR MULTI-CLASS CLASSIFICATION
In the binary case, we transformed the linear prediction into a probability estimate by passing it
through the sigmoid function, resulting in a log-linear model. e analog for the multi-class case
is passing the score vector through the softmax function:

softmax.x/Œi� D
exŒi�P
j exŒj �

: (2.11)

Resulting in:

2.7. TRAINING AS OPTIMIZATION 25

Oy D softmax.xW C b/

Oy Œi� D
e.xW Cb/Œi�P
j e.xW Cb/Œj �

:
(2.12)

e softmax transformation forces the values in Oy to be positive and sum to 1, making them
interpretable as a probability distribution.

2.7 TRAINING AS OPTIMIZATION
Recall that the input to a supervised learning algorithm is a training set of n training examples
x1Wn D x1; x2; : : : ; xn together with corresponding labels y1Wn D y1; y2; : : : ; yn. Without loss of
generality, we assume that the desired inputs and outputs are vectors: x1Wn, y1Wn.⁹

e goal of the algorithm is to return a function f ./ that accurately maps input examples
to their desired labels, i.e., a function f ./ such that the predictions Oy D f .x/ over the training
set are accurate. To make this more precise, we introduce the notion of a loss function, quantifying
the loss suffered when predicting Oy while the true label is y . Formally, a loss function L. Oy; y/

assigns a numerical score (a scalar) to a predicted output Oy given the true expected output y . e
loss function should be bounded from below, with the minimum attained only for cases where
the prediction is correct.

e parameters of the learned function (the matrix W and the biases vector b) are then set
in order to minimize the loss L over the training examples (usually, it is the sum of the losses over
the different training examples that is being minimized).

Concretely, given a labeled training set .x1Wn; y1Wn/, a per-instance loss function L and a
parameterized function f .xI‚/ we define the corpus-wide loss with respect to the parameters ‚

as the average loss over all training examples:

L.‚/ D
1

n

nX
iD1

L.f .xi I‚/; y i /: (2.13)

In this view, the training examples are fixed, and the values of the parameters determine
the loss. e goal of the training algorithm is then to set the values of the parameters ‚ such that
the value of L is minimized:

O‚ D argmin
‚

L.‚/ D argmin
‚

1

n

nX
iD1

L.f .xi I‚/; y i /: (2.14)

Equation (2.14) attempts to minimize the loss at all costs, which may result in overfitting
the training data. To counter that, we often pose soft restrictions on the form of the solution. is
⁹In many cases it is natural to think of the expected output as a scalar (class assignment) rather than a vector. In such cases, y

is simply the corresponding one-hot vector, and argmaxi yŒi� is the corresponding class assignment.

