Dynamic Speech Models

Dynamic Speech Models
Theory, Algorithms, and Applications

Li Deng
ISBN: 9781598290646 | PDF ISBN: 9781598290653
Copyright © 2006 | 118 Pages | Publication Date: 01/01/2006

BEFORE YOU ORDER: You may have Academic or Corporate access to this title. Click here to find out: 10.2200/S00028ED1V01Y200605SAP002

Ordering Options: Paperback $30.00   E-book $24.00   Paperback & E-book Combo $37.50


Why pay full price? Members receive 15% off all orders.
Learn More Here

Read Our Digital Content License Agreement (pop-up)

Purchasing Options:


Speech dynamics refer to the temporal characteristics in all stages of the human speech communication process. This speech “chain” starts with the formation of a linguistic message in a speaker's brain and ends with the arrival of the message in a listener's brain. Given the intricacy of the dynamic speech process and its fundamental importance in human communication, this monograph is intended to provide a comprehensive material on mathematical models of speech dynamics and to address the following issues: How do we make sense of the complex speech process in terms of its functional role of speech communication? How do we quantify the special role of speech timing? How do the dynamics relate to the variability of speech that has often been said to seriously hamper automatic speech recognition? How do we put the dynamic process of speech into a quantitative form to enable detailed analyses? And finally, how can we incorporate the knowledge of speech dynamics into computerized speech analysis and recognition algorithms? The answers to all these questions require building and applying computational models for the dynamic speech process.

What are the compelling reasons for carrying out dynamic speech modeling? We provide the answer in two related aspects. First, scientific inquiry into the human speech code has been relentlessly pursued for several decades. As an essential carrier of human intelligence and knowledge, speech is the most natural form of human communication. Embedded in the speech code are linguistic (as well as para-linguistic) messages, which are conveyed through four levels of the speech chain. Underlying the robust encoding and transmission of the linguistic messages are the speech dynamics at all the four levels. Mathematical modeling of speech dynamics provides an effective tool in the scientific methods of studying the speech chain. Such scientific studies help understand why humans speak as they do and how humans exploit redundancy and variability by way of multitiered dynamic processes to enhance the efficiency and effectiveness of human speech communication. Second, advancement of human language technology, especially that in automatic recognition of natural-style human speech is also expected to benefit from comprehensive computational modeling of speech dynamics. The limitations of current speech recognition technology are serious and are well known. A commonly acknowledged and frequently discussed weakness of the statistical model underlying current speech recognition technology is the lack of adequate dynamic modeling schemes to provide correlation structure across the temporal speech observation sequence. Unfortunately, due to a variety of reasons, the majority of current research activities in this area favor only incremental modifications and improvements to the existing HMM-based state-of-the-art. For example, while the dynamic and correlation modeling is known to be an important topic, most of the systems nevertheless employ only an ultra-weak form of speech dynamics; e.g., differential or delta parameters. Strong-form dynamic speech modeling, which is the focus of this monograph, may serve as an ultimate solution to this problem.

Table of Contents

Introduction
A General Modeling and Computational Framework
Modeling: From Acoustic Dynamics to Hidden Dynamics
Models with Discrete-Valued Hidden Speech Dynamics
Models with Continuous-Valued Hidden Speech Trajectories

About the Author(s)

Li Deng, Microsoft Research
Li Deng received his bachelor's degree from the University of Science and Technology of China and his Ph.D. degree from the University of Wisconsin-Madison. In 1989, he joined the Department of Electrical and Computer Engineering, University of Waterloo, Ontario, Canada, as assistant professor; he became tenured full professor in 1996. From 1992 to 1993, he conducted sabbatical research at the Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA, and from 1997 to 1998, at the ATR Interpreting Telecommunications Research Laboratories, Kyoto, Japan. During 1989-1999, he taught a wide range of electrical and computer engineering courses, both at undergraduate and graduate levels. In 1999, he joined Microsoft Research, Redmond, WA, as senior researcher; he currently serves as principal researcher for the same institution. He has also been affiliate professor in the Department of Electrical Engineering at University of Washington since 2000 after moving to Seattle. His past and current research areas include automatic speech and speaker recognition, statistical methods and machine learning, neural information processing, machine intelligence, audio and acoustic signal processing, statistical signal processing and digital communication, human speech production and perception, acoustic phonetics, auditory speech processing, noise robust speech processing, speech synthesis and enhancement, spoken language understanding systems, multimedia signal processing, and multimodal human-computer interaction. In these areas, he has published more than 300 refereed papers in leading international conferences and journals, and 14 book chapters, and has given keynotes, tutorials, and lectures worldwide. He has been granted more than 20 U.S. or international patents in acoustics, speech/language technology, and signal processing. He has likewise authored two recent books on speech processing.

Reviews
Browse by Subject
Case Studies in Engineering
ACM Books
IOP Concise Physics
0 items
LATEST NEWS

Newsletter
Note: Registered customers go to: Your Account to subscribe.

E-Mail Address:

Your Name: