Hf-Based High-k Dielectrics

Hf-Based High-k Dielectrics

Process Development, Performance Characterization, and Reliability

Young-Hee Kim, Jack C. Lee
ISBN: 9781598290042 | PDF ISBN: 9781598290059
Copyright © 2006 | 92 Pages | Publication Date: 01/01/2006

BEFORE YOU ORDER: You may have Academic or Corporate access to this title. Click here to find out: 10.2200/S00005ED1V01Y200508SSM001

Ordering Options: Paperback $35.00   E-book $28.00   Paperback & E-book Combo $43.75

Why pay full price? Members receive 15% off all orders.
Learn More Here

Read Our Digital Content License Agreement (pop-up)

Purchasing Options:

In this work, the reliability of hafnium oxide with poly gate and dual metal gate electrode (Ru–Ta alloy, Ru) was investigated. Hard breakdown and soft breakdown, particularly the Weibull slopes, were studied under constant voltage stress. Dynamic stressing has also been used. It was found that the combination of trapping and detrapping contributed to the enhancement of the projected lifetime. The results from the polarity dependence studies showed that the substrate injection exhibited a shorter projected lifetime and worse soft breakdown behavior, compared to the gate injection.

Table of Contents

Hard- and Soft-Breakdown Characteristics of Ultrathin HfO2 Under Dynamic and Constant Voltage Stress
Impact of High Temperature Forming Gas and D2 Anneal on Reliability of HfO2 Gate Dielectrics
Effect of Barrier Height and the Nature of Bilayer Structure of HfO2 with Dual Metal Gate Technology
Bimodal Defect Generation Rate by Low Barrier Height and its Impact on Reliability Characteristics

About the Author(s)

Young-Hee Kim, IBM T. J. Watson Research Center, Yorktown Heights, New York
Young-Hee Kim was born in Yang-Pyung, Korea, on January 24, 1972, as a son of Yong-Kae Kim and Jong-Rae Lee. He graduated from Sajic High School, Pusan, Korea, and joined Korean Air Force serving as military policeman. In 1995, he got admission in Kyung-Hee University, Suwon, Korea, and in 1999 he received the B.S. degree in electrical and computer engineering. In August 1999, he started his Masters and Ph.D. study in the department of electrical and computer engineering at The University of Texas at Austin. During the graduate work, he contributed to a number of technical publications (34 coauthored papers, in 14 of which he was the first author). In April 2004, he joined IBM T.J. Watson Research Center as a research staff member and has been carrying out exploratory devices integration.

Jack C. Lee, The University of Texas at Austin
Jack C. Lee received the B.S. and M.S. degrees in electrical engineering from University of California, Los Angeles, in 1980 and 1981, respectively; and the Ph.D. degree in electrical engineering from University of California, Berkeley, in 1988. He is a Professor of the Electrical and Computer Engineering Department and holds the Cullen Trust For Higher Education Endowed Professorship in Engineering at The University of Texas at Austin. From 1981 to 1984, he was a Member of Technical Staff at the TRW Microelectronics Center, CA, in the High-Speed Bipolar Device Program. He has worked on bipolar circuit design, fabrication, and testing. In 1988, he joined the faculty of The University of Texas at Austin. His current research interests include thin dielectric breakdown and reliability, high-k gate dielectrics and gate electrode, high-k thin films for semiconductor memory applications, electronic materials, and semiconductor device fabrication processes, characterization, and modeling. He has published over 300 journal publications and conference proceedings. He has received several patents. Dr. Lee has been awarded two Best Paper Awards and numerous Teaching/Research Awards. Dr. Lee is a Fellow of IEEE.

Browse by Subject
Case Studies in Engineering
ACM Books
IOP Concise Physics
SEM Books
0 items

Note: Registered customers go to: Your Account to subscribe.

E-Mail Address:

Your Name: