Applications of Affine and Weyl Geometry

Applications of Affine and Weyl Geometry

Eduardo Garcia-Rio, Peter Gilkey, Stana Nikcevic, Ramon Vazquez-Lorenzo,
ISBN: 9781608457595 | PDF ISBN: 9781608457601
Copyright © 2013 | 168 Pages | Publication Date: 05/01/2013

BEFORE YOU ORDER: You may have Academic or Corporate access to this title. Click here to find out: 10.2200/S00502ED1V01Y201305MAS013

Ordering Options: Paperback $40.00   E-book $32.00   Paperback & E-book Combo $50.00

Why pay full price? Members receive 15% off all orders.
Learn More Here

Read Our Digital Content License Agreement (pop-up)

Purchasing Options:

Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannian extensions, and Kahler-Weyl geometry from this viewpoint. This book is intended to be accessible to mathematicians who are not expert in the subject and to students with a basic grounding in differential geometry. Consequently, the first chapter contains a comprehensive introduction to the basic results and definitions we shall need - proofs are included of many of these results to make it as self-contained as possible. Para-complex geometry plays an important role throughout the book and consequently is treated carefully in various chapters, as is the representation theory underlying various results. It is a feature of this book that, rather than as regarding para-complex geometry as an adjunct to complex geometry, instead, we shall often introduce the para-complex concepts first and only later pass to the complex setting.

Table of Contents

Basic Notions and Concepts
The Geometry of Deformed Riemannian Extensions
The Geometry of Modified Riemannian Extensions
(para)-Kahler-Weyl Manifolds

About the Author(s)

Eduardo Garcia-Rio, University of Santiago de Compostela
Eduardo Garcia-Rio is a Professor of Mathematics and a member of the Institute of Mathematics of the University of Santiago de Compostela (Spain). He received his Ph.D. degree in 1992 from the University of Santiago de Compostela and is a member of the editorial board of the Journal of Geometric Analysis. His research specialities are Differential Geometry and Mathematical Physics.

Peter Gilkey, University of Oregon
Peter Gilkey is a Professor of Mathematics and a member of the Institute of Theoretical Science at the University of Oregon (USA). He is a fellow of the American Mathematical Society and is a member of the editorial board of Results in Mathematics, Differential Geometry and Applications, and the International Journal of Geometric Methods to Mathematical Physics. He received his Ph.D. in 1972 from Harvard University under the direction of L. Nirenberg. His research specialties are Differential Geometry, Elliptic Partial Differential Equations, and Algebraic topology. He has published more than 230 research articles and books.

Stana Nikcevic, Mathematical Institute, Sanu, Serbia
Stana Nikcevic is a Professor of Mathematics at the University of Belgrade (Serbia). She received her Ph.D. from the University of Belgrade at the Mathematical Faculty and has been working at the University since 1974. During this period, she also sporadically worked at the University of Banja Luka (Bosnia and Hercegovina) and at the Mathematical Faculty in Kragujevac (Serbia). Her research mainly focuses on Differential Geometry. She has maintained international cooperation and has gone on short visits to the TU Berlin, Charles University Prague, Universitate Pierre et Marie Curie (Paris VI), University of Oregon (USA), and University of Santiago de Compostela (Spain).

Ramon Vazquez-Lorenzo, University of Santiago de Compostela
Ramon Vazquez-Lorenzo is a member of the research group in Riemannian Geometry at the Department of Geometry and Topology of the University of Santiago de Compostela (Spain). He is a member of the Spanish Research Network on Relativity and Gravitation.He received his 1997 from the University of Santiago de Compostela. His research focuses mainly on Differential Geometry with special emphasis on the study of the curvature and the algebraic properties of curvature operators in the Lorentzian and in higher signature settings. He has published more than 45 research articles and books.


Browse by Subject
ACM Books
IOP Concise Physics
0 items

Note: Registered customers go to: Your Account to subscribe.

E-Mail Address:

Your Name: