Relativistic Flight Mechanics and Space Travel

Relativistic Flight Mechanics and Space Travel

Richard F. Tinder
ISBN: 9781598291308 | PDF ISBN: 9781598291315
Copyright © 2006 | 140 Pages | Publication Date: 01/01/2006

BEFORE YOU ORDER: You may have Academic or Corporate access to this title. Click here to find out: 10.2200/S00042ED1V01Y200611ENG001

Ordering Options: Paperback $35.00   E-book $28.00   Paperback & E-book Combo $43.75

Why pay full price? Members receive 15% off all orders.
Learn More Here

Read Our Digital Content License Agreement (pop-up)

Purchasing Options:

Relativistic Flight Mechanics and Space Travel is about the fascinating prospect of future human space travel. Its purpose is to demonstrate that such ventures may not be as difficult as one might believe and are certainly not impossible. The foundations for relativistic flight mechanics are provided in a clear and instructive manner by using well established principles which are used to explore space flight possibilities within and beyond our galaxy.

The main substance of the book begins with a background review of Einstein's Special Theory of Relativity as it pertains to relativistic flight mechanics and space travel. The book explores the dynamics and kinematics of relativistic space flight from the point of view of the astronauts in the spacecraft and compares these with those observed by earth's scientists and engineers-differences that are quite surprising.

A quasi historical treatment leads quite naturally into the central subject areas of the book where attention is focused on various issues not ordinarily covered by such treatment. To accomplish this, numerous simple thought experiments are used to bring rather complicated subject matter down to a level easily understood by most readers with an engineering or science background. The primary subjects regarding photon rocketry and space travel are covered in some depth and include a flight plan together with numerous calculations represented in graphical form. A geometric treatment of relativistic effects by using Minkowski diagrams is included for completeness. The book concludes with brief discussions of other prospective, even exotic, transport systems for relativistic space travel. A glossary and simple end-of-chapter problems with answers enhance the learning process.

Table of Contents

Relativistic Rocket Mechanics
Space Travel and the Photon Rocket
Minkowski Diagrams, K-Calculus, and Relativistic Effects
Other Prospective Transport Systems for Relativistic Space Travel

About the Author(s)

Richard F. Tinder, Professor Emeritus of Electrical Engineering and Computer Science, Washington State University
Professor Tinder's teaching interests have been highly variable over his tenure at Washington State University (WSU). They have included crystallography, thermodynamics of solids (both equilibrium and irreversible thermodyamics), tensor properties of crystals, advanced dislocation theory, solid state direct energy conversion (mainly solar cell theory, thermoelectric effects, and fuel cells), general materials science, advanced reaction kinetics in solids, electromagnetics, and analog and digital circuit theory. In recent years he has taught logic design at the entry, intermediate and advanced levels and has published a major text in the area. He has conducted research and published in the areas of tensor properties of solids, surface physics, shock dynamics of solids, milli-micro plastic flow in metallic single crystals, high speed asynchronous (clock independent) state machine design, and Boolean algebra (specifically XOR algebra and graphics). Professor Tinder holds a B.S., M.S. and Ph.D. all from the University of California, Berkeley. It was there, as a graduate student, he gave his first graduate seminar on relativistic rocket mechanics and space travel to a variety of students and professors in engineering and the physical sciences. He has since lectured on the subject to a discussion group of professors at WSU. Over the years he has cultivated an increasingly active interest in this area while gathering more information from a variety of sources. It is this information together with his own work that Professor Tinder presents in the contents of this text. He has spent one year as a visiting faculty member at the University of California, Davis, in what was then the Department of Mechanical Engineering and Materials Science. Currently, he is Professor Emeritus of the School of Electrical Engineering and Computer Science at WSU where he has been a major contributor to the Computer Engineering program there over a period of two decades.


Browse by Subject
Case Studies in Engineering
ACM Books
IOP Concise Physics
SEM Books
0 items

Note: Registered customers go to: Your Account to subscribe.

E-Mail Address:

Your Name: