Partial Update Least-Square Adaptive Filtering

Partial Update Least-Square Adaptive Filtering

Bei Xie, Tamal Bose
ISBN: 9781627052313 | PDF ISBN: 9781627052320
Copyright © 2015 | 115 Pages | Publication Date: 05/01/2014

BEFORE YOU ORDER: You may have Academic or Corporate access to this title. Click here to find out: 10.2200/S00575ED1V01Y201403COM010

Ordering Options: Paperback $40.00   E-book $32.00   Paperback & E-book Combo $50.00


Why pay full price? Members receive 15% off all orders.
Learn More Here

Read Our Digital Content License Agreement (pop-up)

Purchasing Options:



Adaptive filters play an important role in the fields related to digital signal processing and communication, such as system identification, noise cancellation, channel equalization, and beamforming. In practical applications, the computational complexity of an adaptive filter is an important consideration. The Least Mean Square (LMS) algorithm is widely used because of its low computational complexity ($O(N)$) and simplicity in implementation. The least squares algorithms, such as Recursive Least Squares (RLS), Conjugate Gradient (CG), and Euclidean Direction Search (EDS), can converge faster and have lower steady-state mean square error (MSE) than LMS. However, their high computational complexity ($O(N^2)$) makes them unsuitable for many real-time applications. A well-known approach to controlling computational complexity is applying partial update (PU) method to adaptive filters. A partial update method can reduce the adaptive algorithm complexity by updating part of the weight vector instead of the entire vector or by updating part of the time. In the literature, there are only a few analyses of these partial update adaptive filter algorithms. Most analyses are based on partial update LMS and its variants. Only a few papers have addressed partial update RLS and Affine Projection (AP). Therefore, analyses for PU least-squares adaptive filter algorithms are necessary and meaningful.

This monograph mostly focuses on the analyses of the partial update least-squares adaptive filter algorithms. Basic partial update methods are applied to adaptive filter algorithms including Least Squares CMA (LSCMA), EDS, and CG. The PU methods are also applied to CMA1-2 and NCMA to compare with the performance of the LSCMA. Mathematical derivation and performance analysis are provided including convergence condition, steady-state mean and mean-square performance for a time-invariant system. The steady-state mean and mean-square performance are also presented for a time-varying system. Computational complexity is calculated for each adaptive filter algorithm. Numerical examples are shown to compare the computational complexity of the PU adaptive filters with the full-update filters. Computer simulation examples, including system identification and channel equalization, are used to demonstrate the mathematical analysis and show the performance of PU adaptive filter algorithms. They also show the convergence performance of PU adaptive filters. The performance is compared between the original adaptive filter algorithms and different partial-update methods. The performance is also compared among similar PU least-squares adaptive filter algorithms, such as PU RLS, PU CG, and PU EDS. In addition to the generic applications of system identification and channel equalization, two special applications of using partial update adaptive filters are also presented. One application uses PU adaptive filters to detect Global System for Mobile Communication (GSM) signals in a local GSM system using the Open Base Transceiver Station (OpenBTS) and Asterisk Private Branch Exchange (PBX). The other application uses PU adaptive filters to do image compression in a system combining hyperspectral image compression and classification.

Table of Contents

Introduction
Background
Partial Update CMA-based Algorithms for Adaptive Filtering
Partial-Update CG Algorithms for Adaptive Filtering
Partial-Update EDS Algorithms for Adaptive Filtering
Special Applications of Partial-Update Adaptive Filters
Bibliography
Authors' Biographies

About the Author(s)

Bei Xie
Bei Xie received a PhD in electrical engineering from Virginia Polytechnia University in 2012. Her interests include signal processing and communications.

Tamal Bose, University of Arizona
Dr. Tamal Bose serves as Professor and Department Head of Electrical and Computer Engineering at the University of Arizona. He is also the Director of a multi-university NSF Center called the Broadband Wireless Access & Applications Center (BWAC). Dr. Bose's research interests include signal classification for cognitive radios, channel equalization, adaptive filtering algorithms, and nonlinear effects in digital filters. He is author of the text Digital Signal and Image Processing, John Wiley, 2004, and coauthor of Basic Simulation Models of Phase Tracking Devices Using MATLAB, Morgan & Claypool Publishers, 2010.

Reviews
Browse by Subject
Case Studies in Engineering
ACM Books
IOP Concise Physics
SEM Books
0 items
LATEST NEWS

Newsletter
Note: Registered customers go to: Your Account to subscribe.

E-Mail Address:

Your Name: